
ORACLE CloudWorld

Futuristic SQL Making the Impossible Possible

Connor McDonald
Database Advocate

Getting in touch is easy...

@connor_mc_d https://linktr.ee/connor

Getting in touch is easy...

Podcast Instagram Linked.in

@connor_mc_d

https://linktr.ee/connor

key point

this session is not about ...

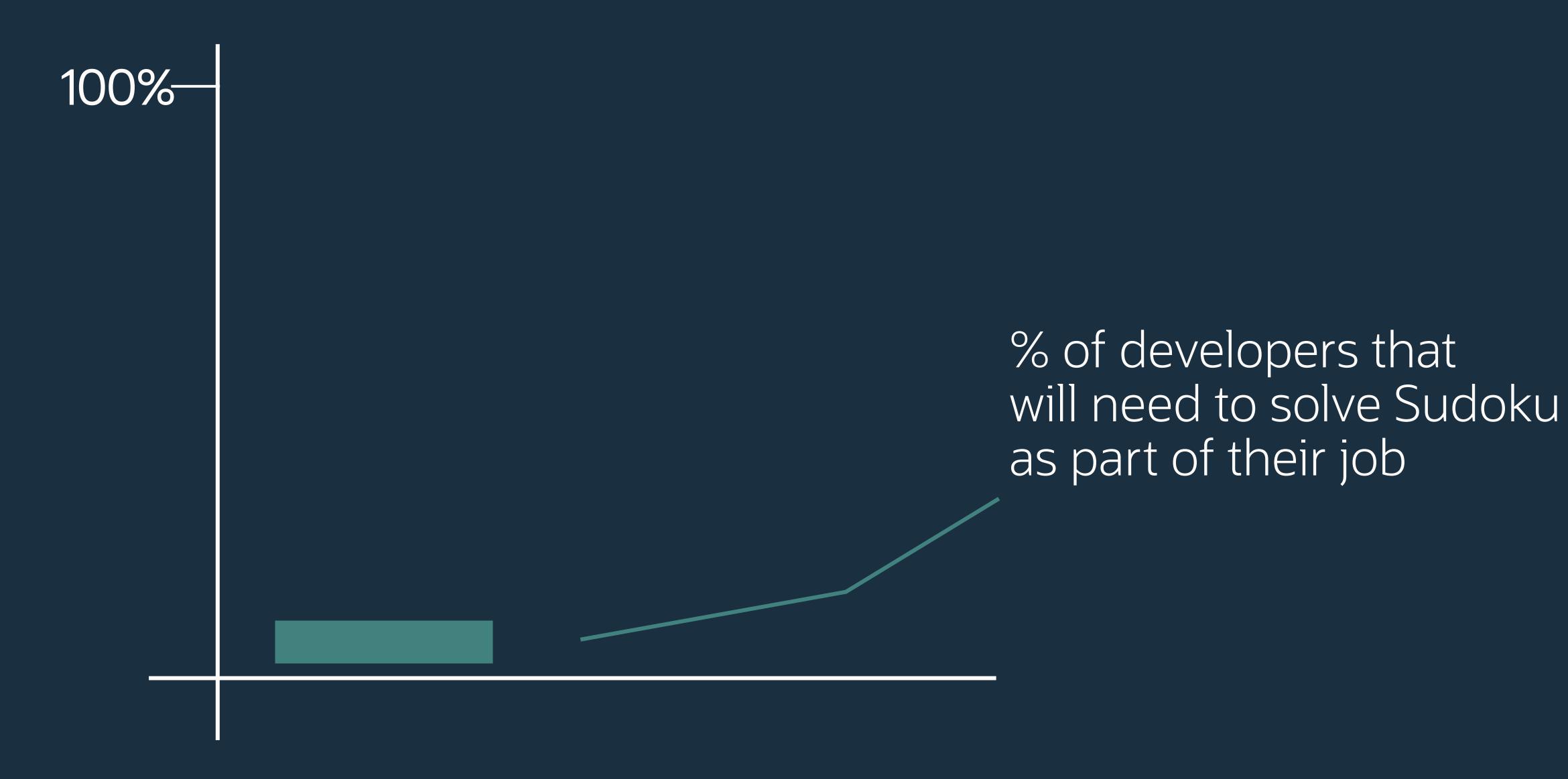
being a smarty pants

we can do anything ...

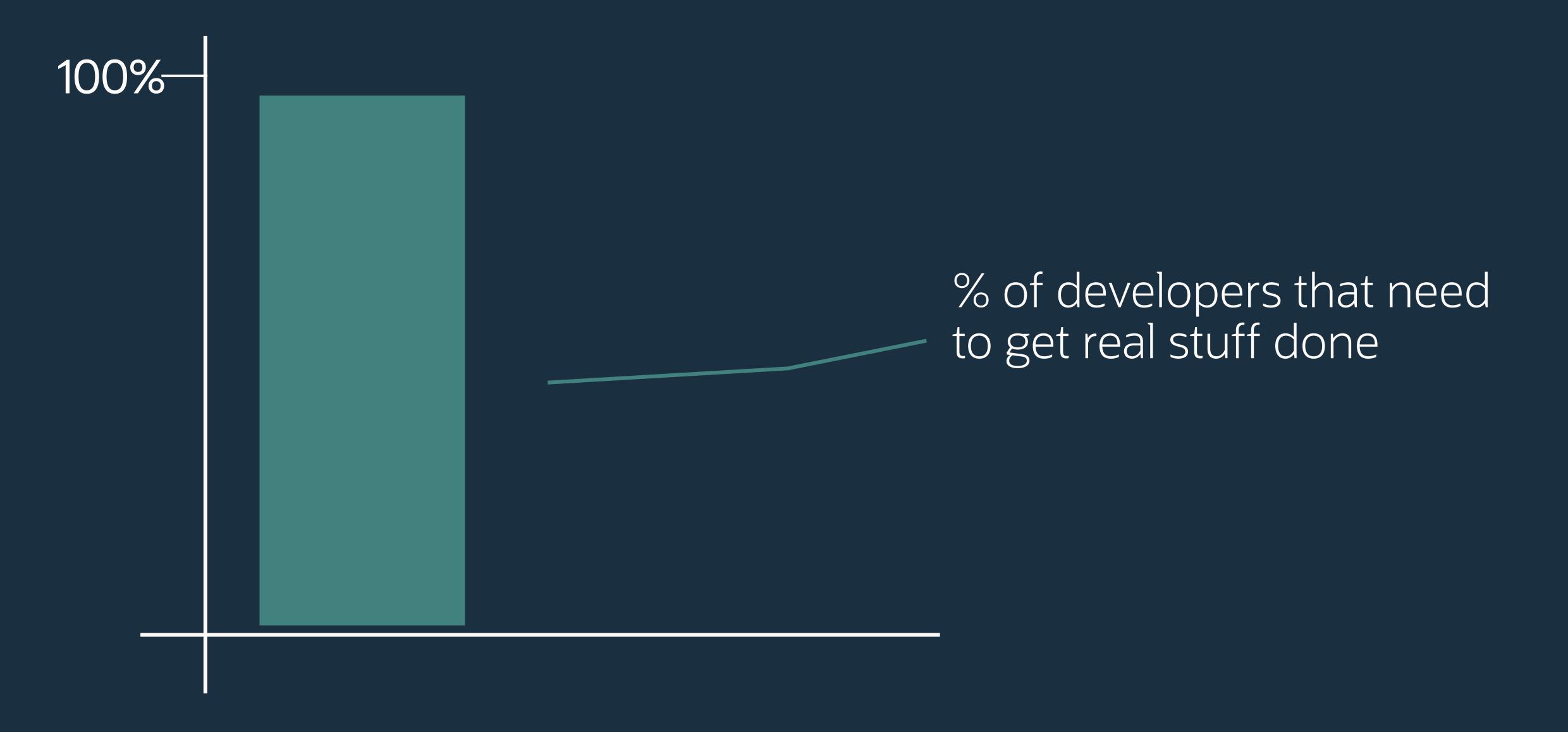

```
SQL> with x(s, ind) as
 2 (select sud, instr(sud, '.')
      from ( select replace(replace(
  3
                 replace(replace(:board,'-'),'|'),' '),chr(10)) sud
 4
              from dual )
      union all
       select substr(s,1,ind-1)||z||substr(s,ind+1)
 8
            , instr(s,'.',ind+1)
 9
      from x
10
          , ( select to char( rownum ) z
              from dual connect by rownum <= 9 ) z
11
12
      where ind > 0
13
       and not exists (
14
         select null
15
         from ( select rownum lp from dual
16
                 connect by rownum <= 9 )
         where z = substr(s, trunc((ind-1)/9)*9+lp,1)
17
```

```
18
                z = substr(s, mod(ind-1, 9)-8+lp*9, 1)
         or
                z = substr(s, mod(trunc((ind-1)/3), 3)*3
19
         or
                               +trunc((ind-1)/27)*27+lp
20
                               +trunc((lp-1)/3)*6,1)
21
22
23
    result as (
24
25
      select s
26
     from x
27
      where ind = 0 )
28
    select
      regexp replace(substr(s,(idx-1)*9+1,9),
29
                   '(...)(...)(...)',
30
                   '\1|\2|\3')||
31
      case when mod(idx,3)=0 then chr(10)|rpad('-',11,'-') end soln
32
33
    from result,
34
           select level idx
35
           from dual
           connect by level <= 9 )</pre>
                                                                             Ack: Anton Scheffer,
                                                                             technology.amis.nl
```

```
SQL> variable board varchar2(1000)
SQL> begin :board :=
                            3
                            9
                                8
  6
  8
 10
                                                  8
                            6
 11
                                                      5
                                           9
 12
                                                      9
 13
 14 end;
```


```
SQL> variable board varchar2(1000)
SQL> begin :board :=
  2 '53. | .7. | . . .
  3 6.. 195 ...
      .98 ... .6.

   6
   8...
   .61
   ..3


     4.. 8.3 ..1
     7......6
   .6. ... 28.
 10
    ... 419 | ...5
 11
 12
      ... 8. .79
 13
     end;
```

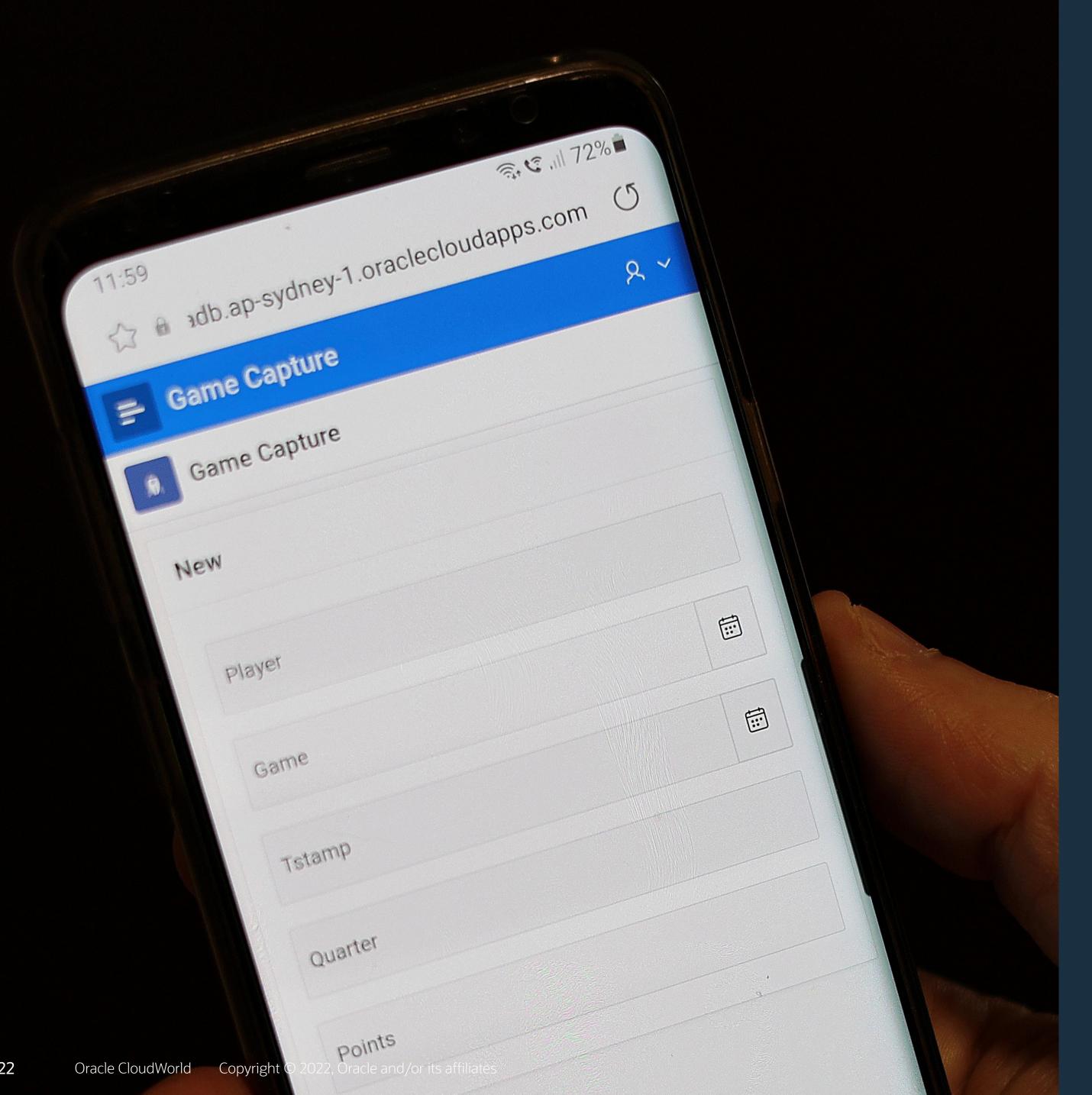
SOLUTION 534 | 678 | 912 672 | 195 | 348 198 | 342 | 567 859 | 761 | 423 426 | 853 | 791 713 | 924 | 856 961 | 537 | 284 287 | 419 | 635

345 | 286 | 179

real stuff

My typical weekend

My typical weekend


... SQL edition

Son #1

apex.oracle.com


```
SQL> select quarter, tstamp, player, points
 2 from basketball
 3 order by tstamp;
  QUARTER TSTAMP PLAYER POINTS
       1 12:30:12 Campbell 1
       1 12:31:57 Robbie 3
       1 12:32:03 Zack
       1 12:32:08 Robbie
       1 12:32:19 Robbie
       1 12:33:05 Max
       1 12:33:08 Campbell
       1 12:33:22 Campbell
       1 12:33:59 Campbell
       1 12:34:19 Rory
       1 12:35:25 Campbell
       1 12:35:50 Matt
       1 12:35:54 Robbie
       1 12:35:54 Will
```

1 12:36:07 Matt

• • •

• • •

"I need the points per player, plus quarter by quarter totals, plus the grand total."


```
SQL> select quarter, tstamp, player, points
  2 from basketball
   order by tstamp;
                                   POINTS
   QUARTER TSTAMP PLAYER
         1 12:30:12 Campbell
         1 12:31:57 Robbie
         1 12:32:03 Zack
         1 12:32:08 Robbie
         1 12:33:05 Max
         1 12:33:08 Campbell
         1 12:33:22 Campbell
• • •
```

```
SQL> select quarter, tstamp, player, points
  2 from basketball
   order by tstamp;
   QUART SQL> select quarter, sum(points)
          2 from basketball
          3 group by quarter
            order by 1;
           QUARTER SUM(POINTS)
                            43
                            19
                            33
```

```
SQL> select quarter, tstamp, player, points
 2 from basketball
   order by tstamp;
  QUARTSQL> select quarter, sum(points)
----- 2 from basketball
         3 group by quarter
         4 order by 1;
           QUARTER SUM(POINTS)
             SQL> select sum(points)
                 from basketball;
             SUM(POINTS)
                     119
```

```
SQL> select quarter, tstamp, player, points
 2 from basketball
   order by tstamp;
  QUARTSQL> select quarter, sum(points)
----- 2 from basketball
         3 group by quarter
         4 order by 1;
           QUARTER SUM(POINTS)
             SQL> select sum(points)
                 from basketball;
             SUM(POINTS)
                     119
```

```
SQL> select quarter, tstamp, player, points
                 etball
    from
    order by
                  amp;
   QUARTSQL> sele
                                     ints)
                      uarter, sur
             from
                        tball
             group
             order by
                                  ints)
              SQL
                    elect sum
                    from basket
              SUM(POINTS)
                       119
```


from 3 to 2

rollup


```
SQL> select quarter, tstamp, player, points
  2 from basketball
  3 order by tstamp;
   QUARTER TSTAMP PLAYER
                                  POINTS
         1 12:30:12 Campbell
         1 12:31:57 Robbie
         1 12:32:03 Zack
         1 12:32:08 Robbie
         1 12:32:19 Robbie
         1 12:33:05 Max
         1 12:33:08 Campbell
         1 12:33:22 Campbell
• • •
```

```
SQL> select quarter, tstamp, player, points
 2 from basketball
 3 order by tstamp;
          SQL> select quarter, sum (points)
               from basketball
              group by rollup(quarter)
            3
              order by 1;
             QUARTER SUM(POINTS)
                               43
                               19
                               33
                              119
```


still messy...

QUARTER	PLAYER	POINTS
1	Campbell	1
1	Robbie	3
1	Zack	2
1	Robbie	1
	•	
2	Max	3

QUARTER	SUM(POINTS)
1	43
2	19
3	33
4	24
	119

QUARTER	PLAYER	POINTS
1	Campbell	1
1	Robbie	3
1	Zack	2
1	Robbie	1
2	Max	3

QUARTER	SUM(POINTS)
1	43
2	19
3	33
4	24
	119

1 Campbell

QUARTER	PLAYER	POINTS
1	Campbell	1
1	Robbie	3
1	Zack	2
1	Robbie	1
•	•	
2	Max	3

QUARTER	SUM(POINTS)
1	43
2	19
3	33
4	24
	119

QUARTER	PLAYER	POINTS
1	Campbell	1
1	Robbie	3
1	Zack	2
1	Robbie	1
•	•	
2	Max	3

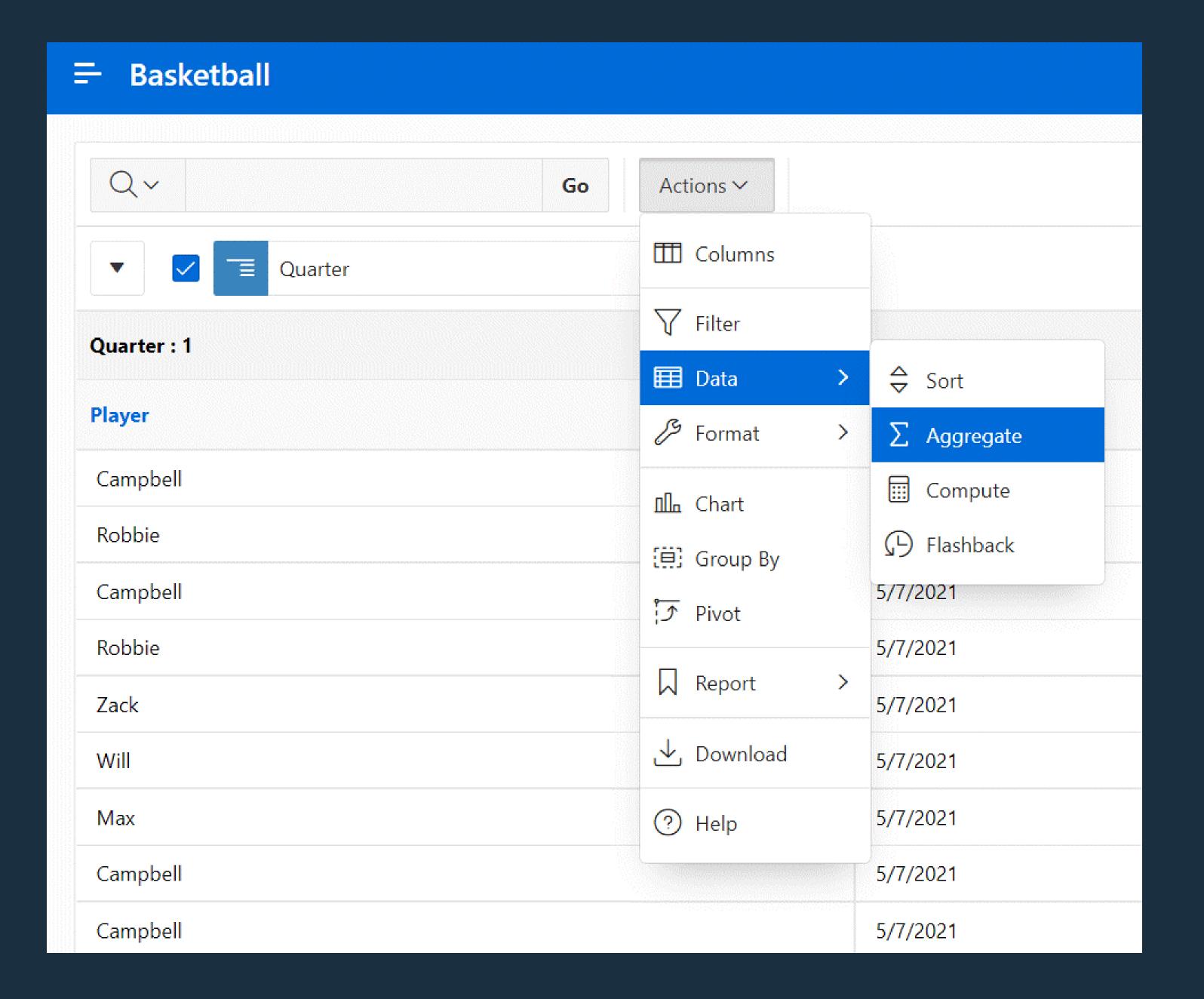
QUARTER	SUM(POINTS)
1	43
2	19
3	33
4	24
	119

1 Campbell
1 Robbie
2
1 Zack
2

QUARTER	PLAYER	POINTS
1	Campbell	1
1	Robbie	3
1	Zack	2
1	Robbie	1
•	•	
2	Max	3

QUARTER	SUM(POINTS)
1	43
2	19
3	33
4	24
	119

1 Campbell
1 Robbie
2
1 Zack
2
43


QUARTER	PLAYER	POINTS
1	Campbell	1
1	Robbie	3
1	Zack	2
1	Robbie	1
•	•	
2	Max	3

QUARTER	SUM(POINTS)
1	43
2	19
3	33
4	24
	119

"TL;DR ... the app can do this for me"


```
select
        QUARTER,
        PLAYER,
        POINTS,
        sum(POINTS) over (partition by QUARTER),
        count(*) over () as apxws_row_cnt
 from (
   select *
   from (
     select PLAYER,
            POINTS,
            QUARTER
       from EMP
 order by "QUARTER"
```

from 2 to 1


```
SQL> select quarter,
           nvl2(rownum, max(player), null) player,
           nvl2(rownum, max(tstamp), null) tstamp,
           sum(points)
    from basketball
 6 group by rollup(quarter, rownum)
 7 order by quarter, tstamp;
                             SUM(POINTS)
  QUARTER PLAYER TSTAMP
        1 Campbell
                    12:30:12
        1 Robbie
                    12:31:57
        1 Zack 12:32:03
                                      43
        2 Robbie
                    13:00:37
                                      19
        4 Max
                     14:11:54
        4
                                      24
                                     119
```

```
SQL> select quarter,
            nvl2(rownum, max(player), null) player,
            nvl2(rownum, max(tstamp), null) tstamp,
            sum(points)
    from basketball
 6 group by rollup(quarter, rownum)
 7 order by quarter, tstamp;
                               SUM(POINTS)
   QUARTER PLAYER
                     TSTAMP
         1 Campbell
                     12:30:12
         1 Robbie
                     12:31:57
         1 Zack
                     12:32:03
                                        43
         2 Robbie
                     13:00:37
                                        19
         4 Max
                      14:11:54
         4
                                        24
                                       119
```

```
SQL> select quarter,
            nvl2(rownum, max(player), null) player,
            nvl2(rownum, max(tstamp), null) tstamp,
           sum(points)
    from basketball
 6 group by rollup(quarter, rownum)
 7 order by quarter, tstamp;
                              SUM(POINTS)
   QUARTER PLAYER TSTAMP
         1 Campbell
                     12:30:12
        1 Robbie
                     12:31:57
         1 Zack
                     12:32:03
                                        43
                     13:00:37
         2 Robbie
         • • •
                                        19
         4 Max
                      14:11:54
                                        24
                                       119
```

```
SQL> select quarter,
           nvl2(rownum, max(player), null) player,
           nvl2(rownum, max(tstamp), null) tstamp,
           sum(points)
    from basketball
 6 group by rollup(quarter, rownum)
 7 order by quarter, tstamp;
                             SUM(POINTS)
  QUARTER PLAYER TSTAMP
        1 Campbell
                    12:30:12
        1 Robbie
                    12:31:57
        1 Zack 12:32:03
                                      43
        2 Robbie
                    13:00:37
                                      19
        4 Max
                     14:11:54
                                      24
        4
                                     119
```

all totals are possible


```
2 group by cube(quarter,player);
QUARTER PLAYER SUM(POINTS)
       1 Campbell
                             10
       1 Matt
                               5
       1 Rory
                               5
       1 Will
                               3
       1 Zack
                               4
                              43
         Campbell
                              26
                             12
         Matt
                              15
         Rory
         Will
                              16
         Zack
                              15
                             119
```

SQL> select quarter, player, sum (points) from basketball

```
2 group by cube(quarter,player);
QUARTER PLAYER SUM(POINTS)
       1 Campbell
                             10
       1 Matt
                               5
       1 Rory
                               5
       1 Will
                               3
       1 Zack
                               4
                              43
         Campbell
                              26
                             12
         Matt
                              15
         Rory
         Will
                              16
         Zack
                              15
                             119
```

SQL> select quarter, player, sum (points) from basketball

```
SQL> select quarter,player,sum(points) from basketball
2 group by cube(quarter,player);

QUARTER PLAYER SUM(POINTS)
```

```
1 Campbell
                        10
1 Matt
                         5
1 Rory
1 Will
                         3
1 Zack
                        43
  Campbell
                        26
                        12
  Matt
                        15
  Rory
  Will
                        16
  Zack
                        15
                       119
```

```
SQL> select quarter, player, sum (points) from basketball
  2 group by cube(quarter,player);
   QUARTER PLAYER SUM(POINTS)
         1 Campbell
                                10
         1 Matt
                                 5
         1 Rory
                                 5
         1 Will
                                 3
         1 Zack
                                43
           Campbell
                                26
                                12
           Matt
                                15
           Rory
                                16
           Will
           Zack
                                15
                               119
```

```
SQL> select quarter,player,sum(points) from basketball
2 group by cube(quarter,player);
```

```
QUARTER PLAYER SUM(POINTS)
      1 Campbell
                             10
      1 Matt
                              5
                              5
      1 Rory
      1 Will
                              3
      1 Zack
                              4
                             43
        Campbell
                             26
                             12
        Matt
                             15
        Rory
        Will
                             16
        Zack
                             15
                            119
```

```
SQL> select quarter, player, sum (points) from basketball
  2 group by cube(quarter,player);
   QUARTER PLAYER SUM(POINTS)
         1 Campbell
                                10
         1 Matt
                                 5
         1 Rory
                                 5
         1 Will
                                 3
         1 Zack
                                 4
                                43
           Campbell
                                26
                                12
           Matt
                                15
           Rory
           Will
                                16
           Zack
                                15
                               119
```

totally customisable


```
SQL> select quarter,player,sum(points)
    from basketball
    group by grouping sets (
       (player), (quarter), ());
  QUARTER PLAYER SUM(POINTS)
                               43
                               19
         3
                               33
         4
                               24
           Campbell
                               26
           Matt
                               12
                               11
           Max
           Robbie
                               24
                               15
           Rory
           Will
                                16
           Zack
                               15
                              119
```



```
SQL> select quarter, player, sum(points)
    from basketball
     group by grouping sets (
      (player), (quarter), ());
                      SUM(POINTS)
   QUARTER PLAYER
                                43
                                19
         3
                                33
         4
                                24
           Campbell
                                26
                                12
           Matt
           Max
                                11
           Robbie
                                24
           Rory
           Will
           Zack
                                15
                               119
```

```
SQL> select quarter,player,sum(points)
    from basketball
    group by grouping sets (
       (player), (quarter), ());
  QUARTER PLAYER SUM(POINTS)
                                43
                               19
                                33
         4
                                24
           Campbell
                                26
                               12
           Matt
                               11
           Max
           Robbie
                               24
                                15
           Rory
           Will
                                16
           Zack
                               15
                              119
```

```
SQL> select quarter,player,sum(points)
    from basketball
    group by grouping sets (
       (player), (quarter), ());
  QUARTER PLAYER SUM(POINTS)
                               43
                               19
         3
                                33
         4
                                24
           Campbell
                                26
           Matt
                               12
                               11
           Max
           Robbie
                                24
                                15
           Rory
           Will
                                16
           Zack
                                15
                              119
```

Q	Search		Go
₩ J	ob		
	CLERK (4)		
S	ALESMAN (4	1)	
	MANAGER (3)	
A	NALYST (2)		
P	RESIDENT ()	
S	alary		
	900 (1)		
9	00 - 1300 (4)	
1	300 - 2000 (3)	
2	000 - 2500 (1)	
>	=2500 (5)		
	to		Go
M C	eptno		
3	0 (6)		
2	0 (5)		

Employee Name ↑=	Job	Mgr	Hired
ADAMS	CLERK	7,788	1/12/1983
ALLEN	SALESMAN	7,698	2/20/1981
BLAKE	MANAGER	7,839	5/1/1981
CLARK	MANAGER	7,839	6/9/1981
FORD	ANALYST	7,566	12/3/1981
JAMES	CLERK	7,698	12/3/1981
JONES	MANAGER	7,839	4/2/1981
KING	PRESIDENT		11/17/1981
MARTIN	SALESMAN	7,698	9/28/1981
MILLER	CLERK	7,782	1/23/1982
SCOTT	ANALYST	7,566	12/9/1982
SMITH	CLERK	7,902	12/17/1980
TURNER	SALESMAN	7,698	9/8/1981
WARD	SALESMAN	7,698	2/22/1981

Q Search	Go
Job	
CLERK (4)	
SALESMAN (4)	
MANAGER (3)	
ANALYST (2)	
PRESIDENT (1)	
Salary	
<900 (1)	
900 - 1300 (4)	
1300 - 2000 (3)	
2000 - 2500 (1)	
>=2500 (5)	
to	Go
Deptno	
30 (6)	
20 (5)	

Employee Name ↑=	Job	Mgr	Hired
ADAMS	CLERK	7,788	1/12/1983
ALLEN	SALESMAN	7,698	2/20/1981
BLAKE	MANAGER	7,839	5/1/1981
CLARK	MANAGER	7,839	6/9/1981
FORD	ANALYST	7,566	12/3/1981
JAMES	CLERK	7,698	12/3/1981
JONES	MANAGER	7,839	4/2/1981
KING	PRESIDENT		11/17/1981
MARTIN	SALESMAN	7,698	9/28/1981
MILLER	CLERK	7,782	1/23/1982
SCOTT	ANALYST	7,566	12/9/1982
SMITH	CLERK	7,902	12/17/1980
TURNER	SALESMAN	7,698	9/8/1981
WARD	SALESMAN	7,698	2/22/1981

Q Search Go	Employee Name ↑=	Job	Mgr	Hired
Job	ADAMS	CLERK	7,788	1/12/1983
CLERK (4)	ALLEN	SALESMAN	7,698	2/20/1981
SALESMAN (4)	BLAKE	MANAGER	7,839	5/1/1981
MANAGER (3)	CLARK	MANAGER	7,839	6/9/1981
ANALYST (2) PRESIDENT (1)	FORD	ANALYST	7,566	12/3/1981
TRESIDEIVI (I)	JAMES	CLERK	7,698	12/3/1981
Salary	JONES	MANAGER	7,839	4/2/1981
<900 (1)	KING	PRESIDENT		11/17/1981
900 - 1300 (4) 1300 - 2000 (3)	MARTIN	SALESMAN	7,698	9/28/1981
2000 - 2500 (1)	MILLER	CLERK	7,782	1/23/1982
>=2500 (5)	SCOTT	ANALYST	7,566	12/9/1982
to	SMITH	CLERK	7,902	12/17/1980
	TURNER	SALESMAN	7,698	9/8/1981
Deptno	WARD	SALESMAN	7,698	2/22/1981


```
select *
from(
  select
      grouping_id( "JOB", "APX$BUCKET3", "DEPTNO") "APX$GRPID",
      "JOB" "APX$FLTV2",
      count(*)"APX$FLTC2",
      "APX$BUCKET3" "APX$FLTV3",
      count(*)"APX$FLTC3",
      "DEPTNO" "APX$FLTV4",
      count(*)"APX$FLTC4",
      count(*)APX$ALLC
from(( select i.*
   from (select "ENAME","JOB","SAL","DEPTNO"
         from ((select /*+ qb_name(apex$inner) */
                    d. "ENAME", d. "JOB", d. "SAL", d. "DEPTNO"
                from (select x.* from "EMP" x
 ) d )) i ) i ))
group by grouping sets ("JOB", "APX$BUCKET3", "DEPTNO", ())
```

Your Basketball data

Suzy Parent

To: Connor McDonald

Hi Connor,

I saw the report you gave to the coach from the game.

Thanks, Suzy

Your Basketball data

Suzy Parent

To: Connor McDonald

Hi Connor,

I saw the report you gave to the coach from the game.

It would be cool if we could get that detail broken down for my son each player.

Thanks, Suzy


```
SQL> select rownum qtr
2 from dual
3 connect by level <= 4;

QTR

1
2
3
4
```



```
SQL> select rownum qtr
  2 from dual
  3 connect by level <= 4;</pre>
       QTR
```



```
SQL> select rownum qtr
2 from dual
3 connect by level <= 4;

QTR

1
2
3
4
```

```
SQL> select quarter, player, sum(points)
 2 from basketball
 3 group by quarter, player
 4 order by 1,2;
  QUARTER PLAYER
                          PTS
        1 Campbell 10
        1 Matt
        1 Max
        1 Robbie
                           10
        1 Rory
        1 Will
        1 Zack
        2 Campbell
        2 Matt
        2 Max
        • • •
```

player results by quarter

conventional outer join


```
SQL> select qtr, player, pts
 2 from
   ( select quarter, player, sum(points) pts
 4 from basketball
       group by quarter, player ) b
 6 right outer join
 7  ( select rownum qtr from dual connect by level <= 4 ) q</pre>
 8 on (q.qtr = b.quarter)
 9 order by 2,1;
      QTR PLAYER
                          PTS
        1 Campbell 10
        2 Campbell 1
        3 Campbell
        4 Campbell
        1 Matt
        2 Matt
        4 Matt
        1 Max
        3 Max
        4 Max
```

```
SQL> select qtr, player, pts
 2 from
    ( select quarter, player, sum(points) pts
 4 from basketball
        group by quarter, player ) b
 6 right outer join
    ( select rownum qtr from dual connect by level <= 4 ) q</pre>
 8 on (q.qtr = b.quarter)
 9 order by 2,1;
                           PTS
      QTR PLAYER
        1 Campbell 10
        2 Campbell
        3 Campbell
        4 Campbell
        1 Matt
        2 Matt
        4 Matt
        1 Max
        3 Max
        4 Max
```

the data is sparse


```
SQL> select rownum qtr
2 from dual
3 connect by level <= 4;

QTR

1
2
3
4</pre>
```

```
SQL> select quarter, player, sum(points)
 2 from basketball
 3 group by quarter, player
 4 order by 1,2;
  QUARTER PLAYER PTS
        1 Campbell 10
       1 Matt
        1 Max
        1 Robbie
                          10
        1 Rory
       1 Will
        1 Zack
        2 Campbell
        2 Matt
        2 Max
        • • •
```

Oracle CloudWorld Copyright © 2022, Oracle and/or its affiliates

```
SQL> select rownum qtr
2 from dual
3 connect by level <= 4;

QTR

1
2
3
4
```

```
x "Campbell"
```

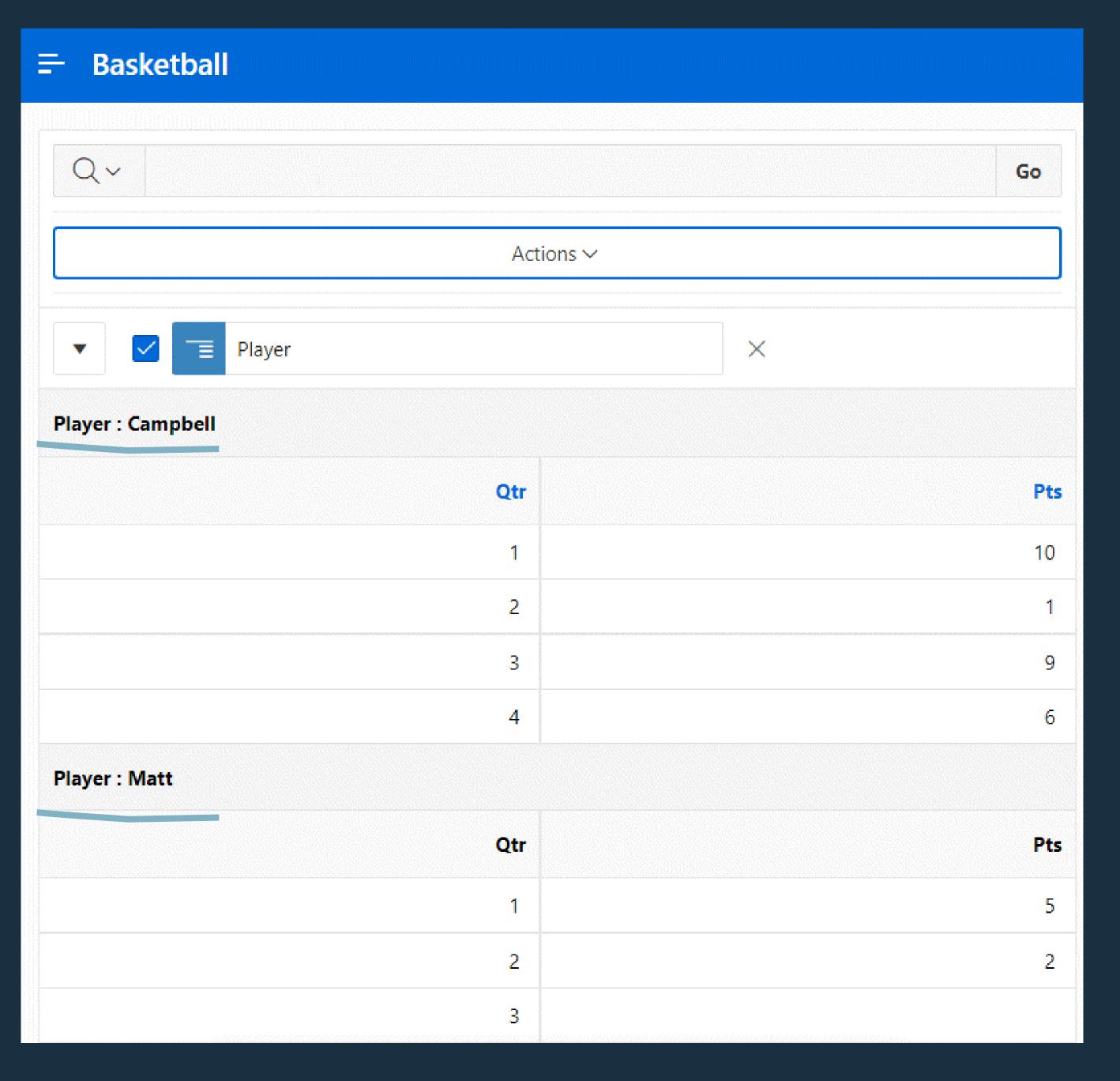
x''Max''

- - -

x "Player n"

partitioned outer join


```
SQL> select qtr, player, nvl(pts,0)
 2 from
    ( select quarter, player, sum(points) pts
   from basketball
   group by quarter, player ) b
 6 partition by (b.player)
    right outer join
 8 ( select rownum qtr from dual connect by level <= 4 ) q</pre>
 9 on (q.qtr = b.quarter)
10 order by 2,1;
     QTR PLAYER PTS
       1 Campbell 10
       2 Campbell 1
       3 Campbell 9
       4 Campbell 6
       1 Matt
       2 Matt
       3 Matt
       4 Matt
       1 Max
       2 Max
       3 Max
       4 Max
```


```
SQL> select qtr, player, nvl(pts,0)
 2 from
    ( select quarter, player, sum(points) pts
   from basketball
   group by quarter, player ) b
 6 partition by (b.player)
    right outer join
 8 ( select rownum qtr from dual connect by level <= 4 ) q</pre>
 9 on (q.qtr = b.quarter)
10 order by 2,1;
     QTR PLAYER PTS
       1 Campbell 10
       2 Campbell 1
       3 Campbell 9
       4 Campbell 6
       1 Matt
       2 Matt
       3 Matt
       4 Matt
       1 Max
       2 Max
       3 Max
       4 Max
```

```
SQL> select qtr, player, nvl(pts,0)
 2 from
    ( select quarter, player, sum(points) pts
   from basketball
   group by quarter, player ) b
 6 partition by (b.player)
    right outer join
 8 ( select rownum qtr from dual connect by level <= 4 ) q</pre>
 9 on (q.qtr = b.quarter)
 10 order by 2,1;
      QTR PLAYER PTS
       1 Campbell 10
       2 Campbell 1
        3 Campbell
        4 Campbell
        1 Matt
        2 Matt
        3 Matt
       4 Matt
        1 Max
        2 Max
        3 Max
        4 Max
```

```
SQL> select qtr, player, nvl(pts,0)
 2 from
    ( select quarter, player, sum(points) pts
   from basketball
   group by quarter, player ) b
 6 partition by (b.player)
    right outer join
 8 ( select rownum qtr from dual connect by level <= 4 ) q</pre>
 9 on (q.qtr = b.quarter)
 10 order by 2,1;
      QTR PLAYER PTS
       1 Campbell 10
       2 Campbell 1
        3 Campbell
        4 Campbell
        1 Matt
        2 Matt
        3 Matt
       4 Matt
        1 Max
        2 Max
        3 Max
        4 Max
```

```
SQL> select qtr, player, nvl(pts,0)
 2 from
    ( select quarter, player, sum(points) pts
   from basketball
    group by quarter, player ) b
 6 partition by (b.player)
    right outer join
 8 ( select rownum qtr from dual connect by level <= 4 ) q</pre>
 9 on (q.qtr = b.quarter)
 10 order by 2,1;
                  PTS
      QTR PLAYER
        1 Campbell 10
        2 Campbell 1
        3 Campbell
        4 Campbell
        1 Matt
        2 Matt
        3 Matt
        4 Matt
        1 Max
                            6
        2 Max
        3 Max
        4 Max
```

```
SQL> select qtr, player, nvl(pts,0)
 2 from
    ( select quarter, player, sum(points) pts
   from basketball
    group by quarter, player ) b
 6 partition by (b.player)
    right outer join
 8 ( select rownum qtr from dual connect by level <= 4 ) q</pre>
 9 on (q.qtr = b.quarter)
 10 order by 2,1;
                  PTS
      QTR PLAYER
        1 Campbell 10
        2 Campbell 1
        3 Campbell
        4 Campbell
        1 Matt
        2 Matt
        3 Matt
        4 Matt
        1 Max
        2 Max
        3 Max
        4 Max
```


Boosting the offense

Mary Coach

To: Connor McDonald

Hi Connor,

We have a new boy who is looking at joining the team.

I don't know much about him, but lets assume he averages 13 points per game.

Thanks, Mary

Boosting the offense

Mary Coach

To: Connor McDonald

Hi Connor,

We have a new boy who is looking at joining the team.

I don't know much about him, but lets assume he averages 13 points per game.

Where would that place him amongst the team?

Thanks, Mary


```
SQL> select player, sum(points)
    from basketball
  3 group by player;
           SUM(POINTS)
PLAYER
Will
                    19
Campbell
                    23
Robbie
                    12
Zack
                    18
                    12
Rory
Max
                    23
                    10
Matt
```



```
SQL> select player, sum(points)
    from basketball
  3 group by player;
           SUM(POINTS)
PLAYER
Will
                    19
Campbell
                    23
Robbie
                    12
Zack
                    18
                    12
Rory
Max
                    23
                    10
Matt
```



```
SQL> select player, sum(points)
2 from basketball
3 group by player;
```

PLAYER	SUM(POINTS)	
		4
Will	19	
Campbell	23	
Robbie	12	
Zack	18	
Rory	12	
Max	23	
Matt	10	

hypothetical analytics

"What if he gets 4 points per quarter?"


```
SQL> select
      quarter,
      rank(4) within group (order by pts) ranking
 4 from
     ( select player, quarter, sum(points) pts
       from basketball
       group by player, quarter
  8
    group by quarter
    order by 1;
 10
  QUARTER
             RANKING
```


Son #2

SQL> select * from aust_rules
2 order by 1,2;

PLAYER#	QUARTER	POSITION	GOALS	NAME
		E		
1	1	Forward	9	Liam
1	2	Forward	0	Liam
1	3	Forward	1	Liam
1	4	Forward	0	Liam
2	1	Forward	0	Noah
2	2	Forward	1	Noah
2	3	Forward	1	Noah
2	4	Forward	1	Noah
3	1	Centre	0	Oliver
3	2	Centre	1	Oliver
3	3	Centre	0	Oliver
3	4	Centre	0	Oliver
4	1	Defence	1	James
4	2	Defence	0	James
4	3	Defence	1	James
4	4	Defence	1	James
• • •				

• • •

"Find the highest goals scored in a single quarter by each player."


```
SQL> select name, max(goals) hi
    from aust_rules
     group by name
    order by 1;
NAME
                         ΗI
Aden
Alex
Ben
                          0
Daniel
David
                          0
Ethan
                          0
Henry
                          0
Jack
James
John
Joseph
• • •
• • •
```

"...and what position were they playing when they scored them?"


```
SQL> select name, max(goals) hi
2 from aust_rules
3 group by name
4 order by 1;
```



```
SQL> select name, position, max(goals) hi
2 from aust_rules
3 group by name
4 order by 1;
```

```
SQL> select name, position, max(goals) hi
  2  from aust_rules
  3  group by name
  4  order by 1;
select name, position, max(goals) hi
  *
ERROR at line 1:
ORA-00979: not a GROUP BY expression
```


KEEP clause

order by 'x' but output 'y'


```
SQL> select name,
            max(goals) as hi,
            max(position) keep ( dense_rank last order by goals ) as hi_pos
    from aust_rules
    group by name
  6 order by 1;
                       HI HI_POS
NAME
Aden
                        1 Centre
Alex
                        1 Defence
                        0 Forward
Ben
Daniel
                        1 Forward
David
                        0 Forward
Ethan
                        0 Defence
Henry
                        0 Centre
Jack
                        1 Defence
James
                        1 Defence
John
                        1 Defence
                        1 Defence
Joseph
• • •
```

```
SQL> select name,
            max(goals) as hi,
            max(position) keep ( dense_rank last order by goals ) as hi_pos
    from aust_rules
  5 group by name
  6 order by 1;
                       HI HI_POS
NAME
Aden
                        1 Centre
Alex
                        1 Defence
                        0 Forward
Ben
Daniel
                        1 Forward
David
                        0 Forward
Ethan
                        0 Defence
Henry
                        0 Centre
Jack
                        1 Defence
James
                        1 Defence
John
                        1 Defence
                        1 Defence
Joseph
• • •
```

```
SQL> select name,
            max(goals) as hi,
            min(position) keep ( dense_rank last order by goals ) as hi_pos
    from aust_rules
  5 group by name
  6 order by 1;
                       HI HI_POS
NAME
Aden
                        1 Centre
Alex
                        1 Defence
                        0 Forward
Ben
Daniel
                        1 Forward
David
                        0 Forward
Ethan
                        0 Defence
Henry
                        0 Centre
Jack
                        1 Defence
James
                        1 Defence
John
                        1 Defence
                        1 Defence
Joseph
• • •
```

```
SQL> select name,
            max(goals) as hi,
            any_value(position) keep ( dense_rank last order by goals ) as hi_pos
    from aust_rules
    group by name
  6 order by 1;
                       HI HI_POS
NAME
Aden
                        1 Centre
                        1 Defence
Alex
                        0 Forward
Ben
Daniel
                        1 Forward
David
                        0 Forward
Ethan
                        0 Defence
Henry
                        0 Centre
Jack
                        1 Defence
                        1 Defence
James
John
                        1 Defence
                        1 Defence
Joseph
• • •
```

As requirements get more complex ...

... SQL gets more complex

"Find the total goals scored by each player, then with the average of these totals, list those players who got above that average."

"Find the total goals scored by each player, then with the average of these totals, list those players who got above that average."

common table expressions

WITH clause

select quarter, sum(goals) from aust_rules group by quarter

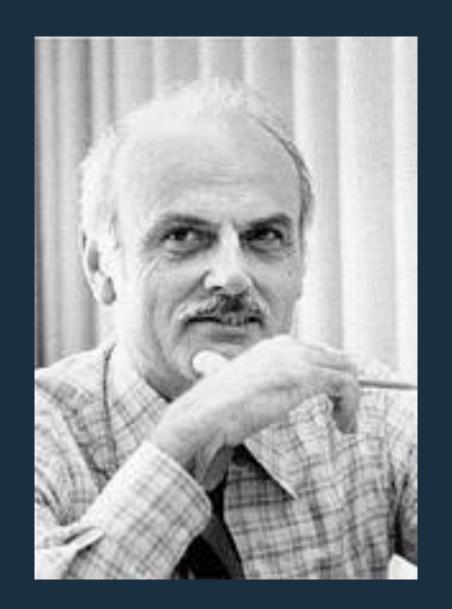

```
WITH subtotals AS
(
    select quarter, sum(goals)
    from aust_rules
    group by quarter
)
select * from subtotals;
```

"Who cares?... more code, same result."

great mental model for developers

relational is a rigorous model ...

relational is the dominant model ...


relational ... can be

not our fault ©

"...data is represented as mathematical n-ary relations, an n-ary relation being a subset of the Cartesian product of n domains."

procedural approach to relational

step by step

"First, find the total goals scored by each player...


```
SQL> with
2  player_total as
3  ( select player#, sum(goals) goals_per_player
4  from aust_rules
5  group by player#
6 ),
```

"First, find the total goals scored by each player...

"... then with the average of these totals...


```
7 avg_goals as
8 ( select avg(goals_per_player) avg_goals
9 from player_total
10 )
```

"... then with the average of these totals...

"... now list those players who got above that average."


```
11  select *
12  from player_total,
13     avg_goals
14  where goals_per_player > avg_goals
15  order by 1;
```

"... now list those players who got above that average."


```
SQL> with
    player_total as
    ( select player#, sum(goals) goals_per_player
     from aust_rules
    group by player#
 6
    avg goals as
    ( select avg(goals_per_player) avg_goals
     from player_total
10
11 select *
   from player_total,
    avg_goals
13
14 where goals_per_player > avg_goals
15 order by 1;
  PLAYER# GOALS_PER_PLAYER AVG_GOALS
                                1.12
                                 1.12
```

programmer's approach...

... relational solution

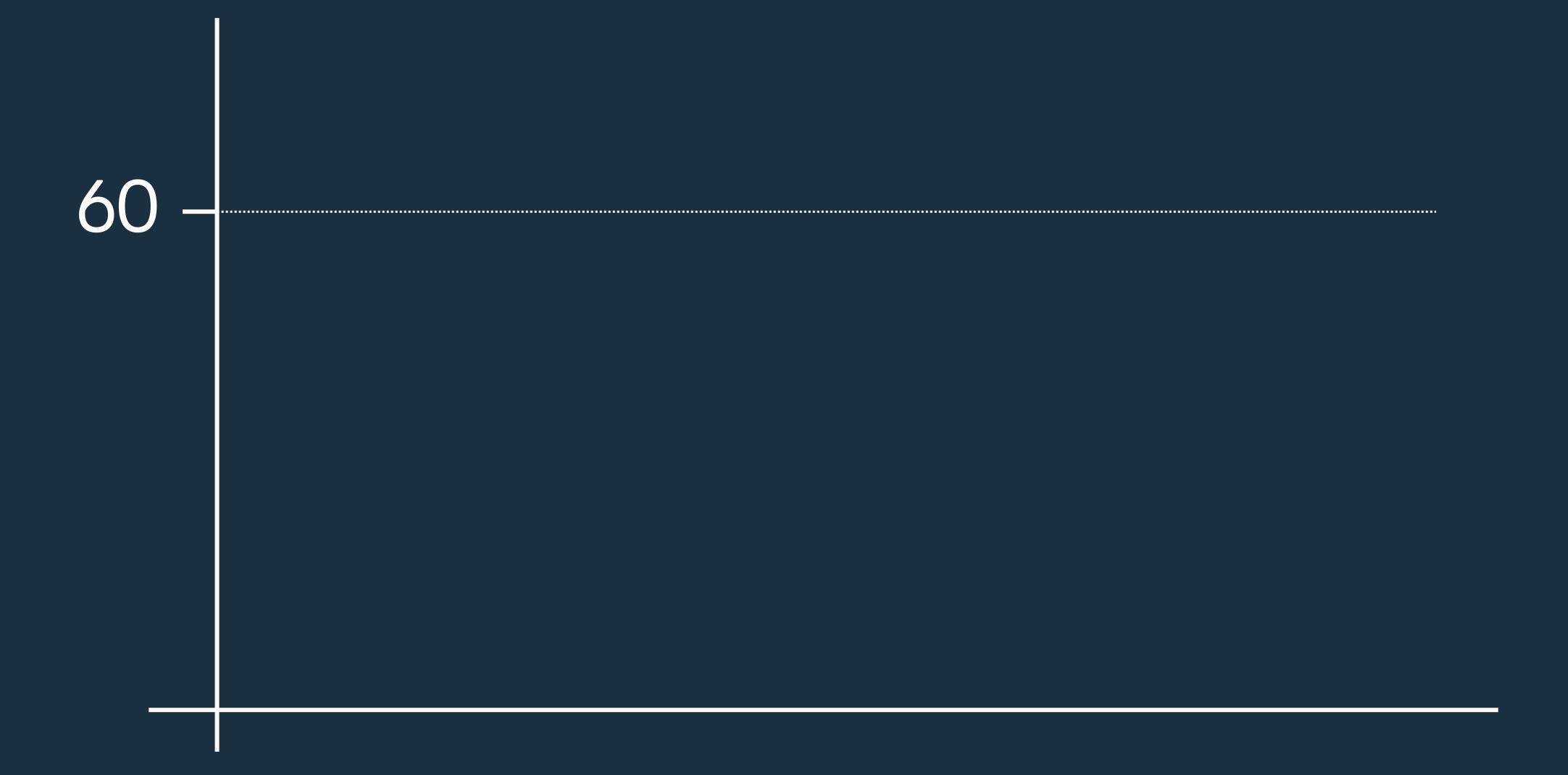
great for code reuse

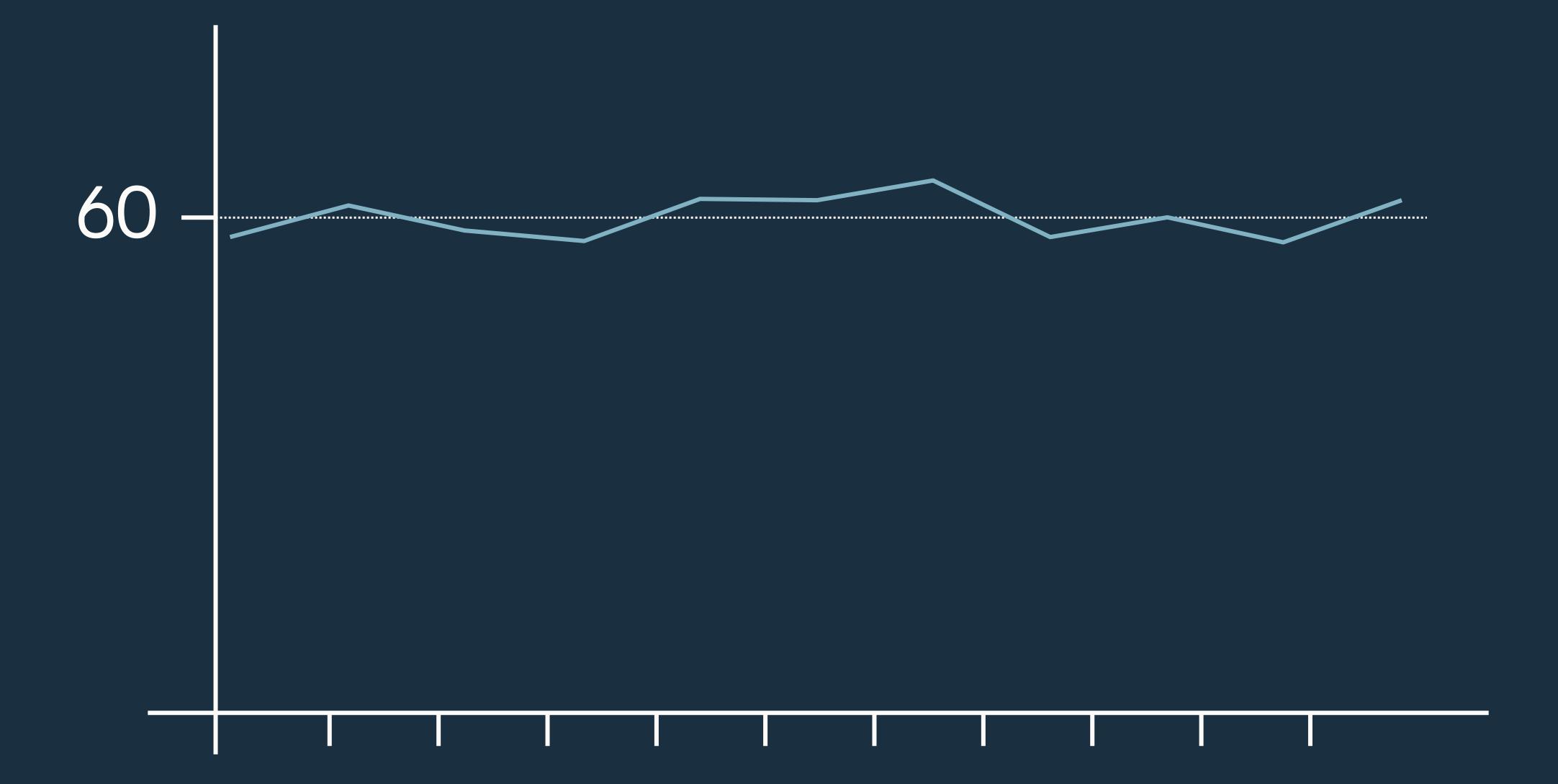
modern apps need JSON

recall partitioned outer join


```
select qtr, player, pts
from
   ( select quarter, player, sum(points) pts
      from basketball
      group by quarter, player ) b
partition by (b.player)
right outer join
   ( select rownum qtr from dual connect by level <= 4 ) q
on ( q.qtr = b.quarter )</pre>
```

```
SQL> with raw_data as (
       select qtr, player, pts
       from
         ( select quarter, player, sum(points) pts
  5
           from basketball
           group by quarter, player ) b
  6
       partition by (b.player)
       right outer join
  8
         ( select rownum qtr from dual connect by level <= 4 ) q
       on (q.qtr = b.quarter)
 10
 11
 12
     select
       json arrayagg(
 13
           json object(key player value pts )
 14
           order by qtr ) as results
 15
    from raw data;
```


```
SQL> with raw_data as (
       select qtr, player, pts
       from
         ( select quarter, player, sum(points) pts
  5
           from basketball
           group by quarter, player ) b
  6
       partition by (b.player)
       right outer join
  8
         ( select rownum qtr from dual connect by level <= 4 ) q
       on (q.qtr = b.quarter)
 10
 11
 12
     select
       json arrayagg(
 13
           json object(key player value pts )
 14
           order by qtr ) as results
 15
    from raw data;
```


```
SQL> with raw_data as (
       select qtr, player, pts
       from
         ( select quarter, player, sum(points) pts
           from basketball
  6
           group by quarter, player ) b
       partition by (b.pl [
       right outer join
  8
                            {"Campbell":9},
          select rownum
                            {"Zack":6},
       on (q.qtr = b.qua)
 10
                            {"Will":4},
 11
                            {"Rory":3},
 12
     select
                            {"Robbie":11},
 13
      json_arrayagg(
                            {"Max":6},
           json_object(ke
 14
           order by qtr
 15
    from raw data;
                            {"Matt":1}
```


Some "me" time


```
SQL> select *
```

- 2 from swimming
- order by sess, lap;

SESS	LAP	ELA
12-JUL-22	1	58.7
12-JUL-22	2	59.7
12-JUL-22	3	60.3
12-JUL-22	4	61.3
12-JUL-22	5	60.7
12-JUL-22	6	59.7
12-JUL-22	7	60.2
12-JUL-22	8	58.6
12-JUL-22	9	59.6
12-JUL-22	10	59.9
12-JUL-22	11	60.4
12-JUL-22	12	60.1

SQL> select avg(ela) from swimming;

"How often am I 'on track'?"

moving average every 3 laps


```
SQL> select
      S.*,
       avg(ela) over ( partition by sess order by lap
                       range between 1 preceding and 1 following
  5
                       as mov_avg
     from swimming s;
SESS
                 LAP
                            ELA MOV_AVG
12-JUL-22
                                  59.2
                          58.7
12-JUL-22
                                59.6
                          59.7
12-JUL-22
                                  60.4
                          60.3
12-JUL-22
                                   60.8
                           61.3
12-JUL-22
                                   60.6
                           60.7
12-JUL-22
                                  60.2
                           59.7
12-JUL-22
                                  59.5
                           60.2
12-JUL-22
                           58.6
                                  59.5
12-JUL-22
                                  59.4
                           59.6
12-JUL-22
                  10
                                  60.0
                           59.9
12-JUL-22
                 11
                           60.4
                                  60.1
12-JUL-22
                  12
                                   60.3
                           60.1
```

148

```
SQL> select
       S.*,
       avg(ela) over ( partition by sess order by lap
                       range between 1 preceding and 1 following
  5
                       as mov avg
     from swimming s;
SESS
                 LAP
                            ELA MOV_AVG
12-JUL-22
                                   59.2
                           58.7
12-JUL-22
                                   59.6
                           59.7
12-JUL-22
                                   60.4
                           60.3
12-JUL-22
                                   60.8
                           61.3
12-JUL-22
                           60.7
                                   60.6
12-JUL-22
                                   60.2
                           59.7
12-JUL-22
                                   59.5
                           60.2
12-JUL-22
                           58.6
                                   59.5
12-JUL-22
                                   59.4
                           59.6
12-JUL-22
                  10
                                   60.0
                           59.9
12-JUL-22
                  11
                           60.4
                                   60.1
12-JUL-22
                  12
                                   60.3
                           60.1
```

```
SQL> select
       S.*,
       avg(ela) over ( partition by sess order by lap
                       range between 1 preceding and 1 following
  5
                       as mov_avg
     from swimming s;
SESS
                 LAP
                            ELA MOV_AVG
12-JUL-22
                                   59.2
                           58.7
12-JUL-22
                                   59.6
                           59.7
12-JUL-22
                                   60.4
                           60.3
12-JUL-22
                                   60.8
                           61.3
12-JUL-22
                           60.7
                                   60.6
12-JUL-22
                                   60.2
                           59.7
12-JUL-22
                                   59.5
                           60.2
12-JUL-22
                           58.6
                                   59.5
12-JUL-22
                                   59.4
                           59.6
12-JUL-22
                  10
                                   60.0
                           59.9
12-JUL-22
                  11
                           60.4
                                   60.1
12-JUL-22
                  12
                                   60.3
                           60.1
```

```
SQL> select
       S.*,
       avg(ela) over ( partition by sess order by lap
                       range between 1 preceding and 1 following
  5
                       as mov_avg
     from swimming s;
                            ELA MOV_AVG
SESS
                 LAP
12-JUL-22
                                   59.2
                           58.7
12-JUL-22
                           59.7
                                  59.6
12-JUL-22
                           60.3
                                   60.4
12-JUL-22
                           61.3
                                   60.8
12-JUL-22
                           60.7
                                   60.6
12-JUL-22
                           59.7
                                   60.2
12-JUL-22
                           60.2
                                   59.5
12-JUL-22
                           58.6
                                   59.5
12-JUL-22
                                   59.4
                           59.6
12-JUL-22
                  10
                                   60.0
                           59.9
12-JUL-22
                  11
                           60.4
                                   60.1
12-JUL-22
                  12
                           60.1
                                   60.3
```

"bring the tempo to 60 seconds"

SQL> select *

- 2 from swimming
- 3 order by sess, lap;

SESS	LAP	ELA
12-JUL-22	1	58.7
12-JUL-22	2	59.7
12-JUL-22	3	60.2
12-JUL-22	4	61.4
12-JUL-22	5	60.7
12-JUL-22	6	59.7
12-JUL-22	7	60.2
12-JUL-22	8	58.6
12-JUL-22	9	59.6
12-JUL-22	10	59.9
12-JUL-22	11	60.4
12-JUL-22	12	60.1

SQL> select *

- 2 from swimming
- 3 order by sess, lap;

SESS	LAP	ELA
12-JUL-22	1	58.7
12-JUL-22	2	59.7
12-JUL-22	3	60.2
12-JUL-22	4	61.4
12-JUL-22	5	60.7
12-JUL-22	6	59.7
12-JUL-22	7	60.2
12-JUL-22	8	58.6
12-JUL-22	9	59.6
12-JUL-22	10	59.9
12-JUL-22	11	60.4
12-JUL-22	12	60.1

60

SQL> select *

- 2 from swimming
- 3 order by sess, lap;

SESS	LAP	ELA
12-JUL-22	1	58.7
12-JUL-22	2	59.7
12-JUL-22	3	60.2
12-JUL-22	4	61.4
12-JUL-22	5	60.7
12-JUL-22	6	59.7
12-JUL-22	7	60.2
12-JUL-22	8	58.6
12-JUL-22	9	59.6
12-JUL-22	10	59.9
12-JUL-22	11	60.4
12-JUL-22	12	60.1

155

SQL> select *

- 2 from swimming
- 3 order by sess, lap;

SESS	LAP	ELA	
12-JUL-22	1	58.7	
12-JUL-22	2	59.7	
12-JUL-22	3	60.2	
12-JUL-22	4	61.4	
12-JUL-22	5	60.7	
12-JUL-22	6	59.7	
12-JUL-22	7	60.2	
12-JUL-22	8	58.6	
12-JUL-22	9	59.6	
12-JUL-22	10	59.9	
12-JUL-22	11	60.4	
12-JUL-22	12	60.1	

SQL> select *

- 2 from swimming
- 3 order by sess, lap;

SESS	LAP	ELA	
12-JUL-22 12-JUL-22 12-JUL-22 12-JUL-22 12-JUL-22 12-JUL-22 12-JUL-22 12-JUL-22	1 2 3 4 5 6 7 8	58.7 59.7 60.2 61.4 60.7 59.7 60.2 58.6	-1.3 -0.3 +0.2 +1.4 ==== 0.0
12-JUL-22 12-JUL-22 12-JUL-22 12-JUL-22	9 10 11 12	59.6 59.9 60.4 60.1	60


```
SQL> select s.*,
2   sum(delta) over ( order by lap ) as run_tot
3   from   swimming s
4   order by sess,lap;
```

SESS	LAP	ELA	DELTA	RUN_TOT	
12-JUL-22	1	58.7	-1.3	-1.3	"Bad"
12-JUL-22	2	59.7	3	-1.6	

```
SQL> select s.*,
2   sum(delta) over ( order by lap ) as run_tot
3   from   swimming s
4   order by sess,lap;
```

SESS	LAP	ELA	DELTA	RUN_TOT	
12-JUL-22	1	58.7	-1.3	 -1.3	"Bad"
12-JUL-22	2	59.7	3	-1.6	"Bad"

```
SQL> select s.*,
2   sum(delta) over ( order by lap ) as run_tot
3   from   swimming s
4   order by sess,lap;
```

	RUN_TOT	DELTA	ELA	LAP	SESS
"Bad"	-1.3	-1.3	58.7	1	12-JUL-22
"Bad"	-1.6	3	59.7	2	12-JUL-22
	-1.3	.3	60.3	3	12-JUL-22

```
SQL> select s.*,
2   sum(delta) over ( order by lap ) as run_tot
3  from  swimming s
4  order by sess,lap;
```

SESS	LAP	ELA	DELTA	RUN_TOT	
12-JUL-22	1	58.7	-1.3	-1.3	"Bad"
12-JUL-22	2	59.7	3	-1.6	"Bad"
12-JUL-22	3	60.3	.3	-1.3	"Bad"

```
SQL> select s.*,
2   sum(delta) over ( order by lap ) as run_tot
3   from   swimming s
4   order by sess,lap;
```

	RUN_TOT	DELTA	ELA	LAP	SESS
"Bad"	-1.3	-1.3	58.7	1	12-JUL-22
"Bad"	-1.6	3	59.7	2	12-JUL-22
"Bad"	-1.3	.3	60.3	3	12-JUL-22

```
SQL> select s.*,
2   sum(delta) over ( order by lap ) as run_tot
3   from  swimming s
4   order by sess,lap;
```

	RUN_TOT	DELTA	ELA	LAP	SESS
"Bad"	-1.3	-1.3	58.7	1	12-JUL-22
"Bad"	-1.6	 3	59.7	2	12-JUL-22
"Bad"	-1.3	.3	60.3	3	12-JUL-22
	0	1.3	61.3	4	12-JUL-22

```
SQL> select s.*,
2   sum(delta) over ( order by lap ) as run_tot
3   from   swimming s
4   order by sess,lap;
```

	RUN_TOT	DELTA	ELA	LAP	SESS
"Bad"	-1.3	-1.3	58.7	1	12-JUL-22
"Bad"	-1.6	3	59.7	2	12-JUL-22
"Bad"	-1.3	.3	60.3	3	12-JUL-22
	0	1.3	61.3	4	12-JUL-22


```
SQL> select s.*,
2   sum(delta) over ( order by lap ) as run_tot
3   from   swimming s
4   order by sess,lap;
```

SESS	LAP	ELA	DELTA	RUN_TOT	
12-JUL-22	1	58.7	-1.3	-1.3	"Bad"
12-JUL-22	2	59.7	3	-1.6	"Bad"
12-JUL-22	3	60.3	.3	-1.3	"Bad"
12-JUL-22	4	61.3	1.3	0	"Zero" ©

```
SQL> select s.*,
2   sum(delta) over ( order by lap ) as run_tot
3   from   swimming s
4   order by sess,lap;
```

SESS	LAP	ELA	DELTA	RUN_TOT	
12-JUL-22	1	58.7	-1.3	-1.3	"Bad"
12-JUL-22	2	59.7	3	-1.6	"Bad"
12-JUL-22	3	60.3	.3	-1.3	"Bad"
12-JUL-22	4	61.3	1.3	0	"Zero" ©
12-7111-22	5	60.7	7	7	

```
SQL> select s.*,
2   sum(delta) over ( order by lap ) as run_tot
3   from   swimming s
4   order by sess,lap;
```

SESS	LAP	ELA	DELTA	RUN_TOT	
12-JUL-22	1	58.7	-1.3	-1.3	"Bad"
12-JUL-22	2	59.7	3	-1.6	"Bad"
12-JUL-22	3	60.3	.3	-1.3	"Bad"
12-JUL-22	4	61.3	1.3	0	"Zero" ©
12-JUL-22	5	60.7	.7	.7	
12-JUL-22	6	59.7	3	.4	


```
SQL> select s.*,
2   sum(delta) over ( order by lap ) as run_tot
3   from   swimming s
4   order by sess,lap;
```

SESS	LAP	ELA	DELTA	RUN_TOT	
12-JUL-22	1	58.7	-1.3	-1.3	"Bad"
12-JUL-22	2	59.7	3	-1.6	"Bad"
12-JUL-22	3	60.3	.3	-1.3	"Bad"
12-JUL-22	4	61.3	1.3	0	"Zero" 🤄
12-JUL-22	5	60.7	.7	.7	
12-JUL-22	6	59.7	3	.4	
12-JUL-22	7	60.2	.2	.6	

pattern

bad_lap* zero

bad_lap* zero

zero as sum(delta) = 0

- pattern (bad_lap* zero)
- 7 define zero as sum(delta) = 0

- pattern (bad_lap* zero)
- 7 define zero as sum(delta) = 0

```
SQL> select * from swimming
  2 match_recognize (
  3   partition by sess order by lap
  4   measures classifier() pattern, sum(delta) as run_tot
  5   all rows per match
  6   pattern (bad_lap* zero)
  7   define zero as sum(delta) = 0
```

```
SQL> select * from swimming
  2 match_recognize (
  3   partition by sess order by lap
  4   measures classifier() pattern, sum(delta) as run_tot
  5   all rows per match
  6   pattern (bad_lap* zero)
  7   define zero as sum(delta) = 0
```

```
SQL> select * from swimming
 2 match_recognize (
     partition by sess order by lap
     measures classifier() pattern, sum(delta) as run_tot
     all rows per match
     pattern (bad_lap* zero)
     define zero as sum(delta) = 0
 9 );
                                   RUN_TOT ELA
             LAP PATTERN
SESS
12-JUL-22 1 BAD LAP
                                     -1.3
                                              58.7
12-JUL-22
              2 BAD_LAP
                                     -1.6
                                              59.7
12-JUL-22
              3 BAD_LAP
                                      -1.3
                                              60.3
               4 ZERO
12-JUL-22
                                              61.3
12-JUL-22 9 BAD_LAP
                                      -.4
                                              59.6
                                       -.5
59.9
                                       -.1
              11 BAD LAP
12-JUL-22
                                               60.4
12-JUL-22
              12 ZERO
                                       0
                                               60.1
```

```
SQL> select * from swimming
    match_recognize (
      partition by sess order by lap
      measures classifier() pattern, sum(delta) as run tot
      all rows per match
      pattern (bad_lap* zero)
      define zero as sum(delta) = 0
 9 );
                                        RUN_TOT
SESS
               LAP PATTERN
                                                     ELA
12-JUL-22 1 BAD_LAP
                                          -1.3
                                                    58.7
                2 BAD LAP
12-JUL-22
                                          -1.6 59.7
                3 BAD LAP
12-JUL-22
                                          -1.3
                                                    60.3
12-JUL-22
                4 ZERO
                                                    61.3
                9 BAD LAP
12-JUL-22
                                           -.4
                                                    59.6
                                           -.5
12-JUL-22
               10 BAD LAP
                                                    59.9
                                           -.1
                11 BAD LAP
12-JUL-22
                                                    60.4
12-JUL-22
                12 ZERO
                                            0
                                                    60.1
```

```
SQL> select * from swimming
    match_recognize (
      partition by sess order by lap
      measures classifier() pattern, sum(delta) as run tot
      all rows per match
      pattern (bad_lap* zero)
      define zero as sum(delta) = 0
 9 );
                                        RUN_TOT
SESS
               LAP PATTERN
                                                     ELA
12-JUL-22 1 BAD_LAP
                                          -1.3
                                                    58.7
                2 BAD LAP
12-JUL-22
                                          -1.6 59.7
                3 BAD LAP
12-JUL-22
                                           -1.3
                                                    60.3
12-JUL-22
                4 ZERO
                                                    61.3
                9 BAD LAP
12-JUL-22
                                           -.4
                                                    59.6
                                           -.5
12-JUL-22
               10 BAD LAP
                                                    59.9
                                           -.1
                11 BAD LAP
12-JUL-22
                                                    60.4
12-JUL-22
                12 ZERO
                                                    60.1
```

```
SQL> select * from swimming
 2 match_recognize (
     partition by sess order by lap
     measures classifier() pattern, sum(delta) as run_tot
     all rows per match
     pattern (bad_lap* zero)
     define zero as sum(delta) = 0
 9 );
                                    RUN_TOT ELA
             LAP PATTERN
SESS
12-JUL-22 1 BAD_LAP
                                     -1.3
                                               58.7
12-JUL-22
               2 BAD_LAP
                                     -1.6
                                               59.7
12-JUL-22
               3 BAD_LAP
                                               60.3
                                      -1.3
12-JUL-22
               4 ZERO
                                               61.3
12-JUL-22 9 BAD LAP
                                       -.4
                                               59.6
                                       -.5
59.9
              11 BAD LAP
12-JUL-22
                                               60.4
12-JUL-22
              12 ZERO
                                               60.1
```

did you miss it?


```
SQL> select *
```

- 2 from swimming
- 3 order by sess, lap;

SESS	LAP	ELA
12-JUL-22	1	58.7
12-JUL-22	2	59.7
12-JUL-22	3	60.3
12-JUL-22	4	61.3
12-JUL-22	5	60.7
12-JUL-22	6	59.7
12-JUL-22	7	60.2
12-JUL-22	8	58.6
12-JUL-22	9	59.6
12-JUL-22	10	59.9
12-JUL-22	11	60.4
12-JUL-22	12	60.1

SQL> select avg(ela) from swimming;

188

```
SQL> select *
```

- 2 from swimming
- 3 order by sess, lap;

SESS	LAP	ELA	
12-JUL-22	1	58.7	
12-JUL-22	2	59.7	_
12-JUL-22	3	60.3	_
12-JUL-22	4	61.3	_
12-JUL-22	5	60.7	_
12-JUL-22	6	59.7	40
12-JUL-22	7	60.2	
12-JUL-22	8	58.6	_
12-JUL-22	9	59.6	_
12-JUL-22	10	59.9	_
12-JUL-22	11	60.4	
12-JUL-22	12	60.1	

SQL> select avg(ela) from swimming;


```
SQL> select * from swimming
2 match_recognize (
3   partition by sess order by lap
4   measures classifier() pattern, sum(delta) as run_tot
5   all rows per match
6   after match skip to next row
7   pattern (bad_lap* zero)
8   define zero as sum(delta) = 0
9 );
```

SESS	LAP	PATTERN	RUN_TOT	ELA
12-JUL-22	1	BAD_LAP	-1.3	58.7
12-JUL-22	2	BAD_LAP	-1.6	59.7
12-JUL-22	3	BAD_LAP	-1.3	60.3
12-JUL-22	4	ZERO	0	61.3

190

```
SQL> select * from swimming
 2 match recognize (
     partition by sess order by lap
     measures classifier() pattern, sum(delta) as run_tot
    all rows per match
    after match skip to next row
    pattern (bad lap* zero)
    define zero as sum(delta) = 0
   );
SESS LAP PATTERN RUN TOT ELA
12-JUL-22
12-JUL-22 2 BAD_LAP
                                      59.7
12-JUL-22
12-JUL-22
                3 BAD LAP
                                      60.3
61.3
      60.7
      12-JUL-22
                6 BAD LAP 1.7
                                      59.7
      12-JUL-22 7 BAD LAP 1.9
                                      60.2
                         .5
      12-JUL-22 8 BAD LAP
                                      58.6
      12-JUL-22 9 BAD LAP
                                      59.6
      12-JUL-22
              10 ZERO
                                      59.9
```

```
SQL> select * from swimming
 2 match recognize (
    partition by sess order by lap
    measures classifier() pattern, sum(delta) as run_tot
    all rows per match
    after match skip to next row
    pattern (bad_lap* zero)
    define zero as sum(delta) = 0
 9
   );
SESS LAP PATTERN RUN TOT ELA
12-JUL-22
12-JUL-22 3 BAD LAP 0 60.3
12-JUL-
      12-JUL-12-JUL-22
                    4 BAD LAP
                               1.3
                                          61.3
      12-JUL-12-JUL-22 5 BAD_LAP
                                          60.7
      12-JUL-12-JUL-22 6 BAD_LAP
                                   1.7
                                          59.7
      12-JUL-12-JUL-22 7 BAD_LAP
                                   1.9 60.2
      12-JUL-12-JUL-22
                    8 BAD_LAP
                                  .5
                                          58.6
           12-JUL-22
                     9 BAD LAP
                                    .1
                                          59.6
           12-JUL-22
                    10 ZERO
                                          59.9
                                    0
```

```
SQL> select * from swimming
 2 match recognize (
    partition by sess order by lap
    measures classifier() pattern, sum(delta) as run_tot
    all rows per match
    after match skip to next row
    pattern (bad_lap* zero)
    define zero as sum(delta) = 0
 9
   );
SESS LAP PATTERN RUN TOT ELA
12-JUL-22
12-JUL-<sub>12-JUL-22</sub> 4 BAD_LAP 1.3 61.3
      12-JUL-<sub>12-JUL-22</sub> 5 BAD_LAP 2 60.7
      12-JUL-<sub>12-JUL-22</sub> 7 RAD I AD 1 9 60 2
                    12-JUL-22 9 BAD LAP
                                                   59.6
                           10 BAD_LAP
                    12-JUL-22
                                                   59.9
                    12-JUL-22
                             11 BAD_LAP
                                                   60.4
                                            -.1
                    12-JUL-22
                             12 ZERO
                                                   60.1
                                              0
```


Boys need feeding!

"Divide the shopping equally into 4 bags."

196

SQL> select * from shopping;

ITEM	WEIGHT
milk	1000
bread	650
dogfood	490
biscuits	250
soda	1500
gin	2100
apples	900
bananas	1200
carrots	650
steak	550
icecream	1240
butter	450
honey	370
vegemite	540
ketchup	290
eggs	800
detergent	950
deodrant	220

SQL> select * from shopping;

ITEM	WEIGHT
milk	1000
bread	650
dogfood	490
biscuits	250
soda	1500
gin	2100
apples	900
bananas	1200
carrots	650
steak	550
icecream	1240
butter	450
honey	370
vegemite	290
ketchup	540
eggs	800
detergent	950
deodrant	220

SQL> select * from shopping;

ITEM WEIGHT

milk

bread

dogfood

biscuits

soda

gin

apples

bananas

carrots

steak

icecream

butter

honey

vegemite

ketchup

eggs

detergent

deodrant

SQL can do this too!


```
pattern ( (bag1|bag2|bag3|bag4)* )
define
```

(matching my as yet unknown rules)

```
pattern ( (bag1|bag2|bag3|bag4)* )
define
```

(matching my as yet unknown rules)

```
pattern ( (bag1|bag2|bag3|bag4)* )
define
```

```
\begin{array}{c} \textit{Ihave 4 bags} \\ \textit{(matching my as yet unknown rules)} \\ \textit{Use a bag if ...} \\ \textit{pattern ( (bag1|bag2|bag3|bag4)* )} \\ \textit{define} \end{array}
```

```
\begin{array}{c} \textit{lhave 4 bags} \\ \textit{(matching my as yet unknown rules)} \\ \textit{use a bag if ...} \\ \textit{pattern ( (bag1|bag2|bag3|bag4)* )} \\ \textit{define} \end{array}
```

```
(matching my as yet unknown rules)
```

```
pattern ( (bag1|bag2|bag3|bag4)* )

define
  bag1 as count(bag1.*) = 1 or
```

use a bag if ...
first item in the bag, or

my bag (before this item) has less then the other bags

my bag (before this item) has less then the other bags

<= least(sum(bag3.weight),sum(bag4.weight))</pre>

my bag (before this item) has less then the other bags

, bag3 as count(bag3.*) = 1 or

sum(bag3.weight)-bag3.weight

<= sum(bag4.weight)</pre>

```
SQL> select *
  2 from shopping
    match_recognize (
      order by weight desc
      measures
  6
         classifier() bag#,
         sum(bag1.weight) bag1,
         sum(bag2.weight) bag2,
         sum(bag3.weight) bag3,
         sum(bag4.weight) bag4
 10
11 all rows per match
    pattern ( (bag1|bag2|bag3|bag4)* )
 13 define
 14
        bag1 as count(bag1.*) = 1 or
          sum(bag1.weight)-bag1.weight <=</pre>
15
16
             least(sum(bag2.weight),sum(bag3.weight),sum(bag4.weight))
17
      , bag2 as count(bag2.*) = 1 or
          sum(bag2.weight)-bag2.weight <=</pre>
 18
19
             least(sum(bag3.weight),sum(bag4.weight))
      , bag3 as count(bag3.*) = 1 or
 20
          sum(bag3.weight)-bag3.weight <= sum(bag4.weight)</pre>
 21
```

WEIGHT	BAG#	BAG1	BAG2	BAG3	BAG4	ITEM
 2100	BAG1	2100				gin
1500	BAG2	2100	1500			soda
1240	BAG3	2100	1500	1240		icecream
1200	BAG4	2100	1500	1240	1200	bananas
1000	BAG4	2100	1500	1240	2200	milk
950	BAG3	2100	1500	2190	2200	detergent
900	BAG2	2100	2400	2190	2200	apples
800	BAG1	2900	2400	2190	2200	eggs
650	BAG3	2900	2400	2840	2200	carrots
650	BAG4	2900	2400	2840	2850	bread
550	BAG2	2900	2950	2840	2850	steak
540	BAG3	2900	2950	3380	2850	vegemite
490	BAG4	2900	2950	3380	3340	dogfood
450	BAG1	3350	2950	3380	3340	butter
370	BAG2	3350	3320	3380	3340	honey
290	BAG2	3350	3610	3380	3340	ketchup
250	BAG4	3350	3610	3380	3590	biscuits
220	BAG1	3570	3610	3380	3590	deodrant

WEIGHT	BAG#	BAG1	BAG2	BAG3	BAG4	ITEM
2100	BAG1	2100				gin
1500	BAG2	2100	1500			soda
1240	BAG3	2100	1500	1240		icecream
1200	BAG4	2100	1500	1240	1200	bananas
1000	BAG4	2100	1500	1240	2200	milk
950	BAG3	2100	1500	2190	2200	detergent
900	BAG2	2100	2400	2190	2200	apples
800	BAG1	2900	2400	2190	2200	eggs
650	BAG3	2900	2400	2840	2200	carrots
650	BAG4	2900	2400	2840	2850	bread
550	BAG2	2900	2950	2840	2850	steak
540	BAG3	2900	2950	3380	2850	vegemite
490	BAG4	2900	2950	3380	3340	dogfood
450	BAG1	3350	2950	3380	3340	butter
370	BAG2	3350	3320	3380	3340	honey
290	BAG2	3350	3610	3380	3340	ketchup
250	BAG4	3350	3610	3380	3590	biscuits
220	BAG1	3570	3610	3380	3590	deodrant


```
SQL> with portions as
2 (
3   select *
4   from shopping
5   match_recognize (
6    order by weight desc
7   measures
...
25 )
```

```
SQL> with portions as
      select *
      from shopping
      match_recognize (
        order by weight desc
  6
        measures
        • • •
 25
 26
     select
       bag#,
 27
      listagg(item,',') within group ( order by item ) as items,
 28
       sum(weight)/1000 kg
 29
     from portions
 30
     group by bag#;
 31
```

```
SQL> with portions as
      select *
      from shopping
      match_recognize (
        order by weight desc
  6
        measures
        • • •
 25
 26
     select
       bag#,
 27
      listagg(item,',') within group ( order by item ) as items,
 28
       sum(weight)/1000 kg
 29
     from portions
 30
     group by bag#;
 31
```

```
SQL> with portions as
      select *
      from shopping
      match recognize (
        measures
      BAG#
                                                                  KG
               ITEMS
 28
              butter, deodrant, eggs, gin
       BAG1
                                                                3.57
               apples, honey, ketchup, soda, steak
       BAG2
                                                                3.61
      BAG3
               carrots, detergent, icecream, vegemite
                                                                3.38
               bananas, biscuits, bread, dogfood, milk
                                                                3.59
       BAG4
```


"You said the code would be easy!"

"But I have 3 bags not 4 bags!"

"But I buy hardware not food!"

SQL macros

SQL ... that writes/changes SQL!


```
SQL> create or replace
    function pack_and_carry(p_tab dbms_tf.table_t, p_bags int)
         return clob sql macro is
 4
      l_sql clob;
     l_bag varchar2(1000);
     1 sum varchar2(4000);
      l pattern varchar2(4000);
 8 begin
      for i in 1 .. p_bags loop
       l bag := l bag | 'bag' | i | ' ';
 10
      l\_sum := l\_sum \mid replace('sum(bag@.weight) bag@,','@',i) \mid chr(10);
 11
      if i < p bags then
12
13
         if i < p bags-1 then
14
            l pattern := l pattern | |
15
            replace(',bag@ as count(bag@.*)=1 or sum(bag@.weight)-bag@.weight <= least(','@',i);
16
          else
17
            l pattern := l pattern ||
            replace(',bag@ as count(bag@.*)=1 or sum(bag@.weight)-bag@.weight <= ','@',i);
18
19
          end if;
20
          for j in i+1 .. p bags loop
            l pattern := l pattern | replace('sum(bag@.weight),','@',j);
 21
          end loop;
 22
          l_pattern := rtrim(l_pattern,',')||')'||chr(10);
 23
 24
        end if;
 25
      end loop;
```

```
26 l_sql := q'{
27 select * from p_tab
   match_recognize (
28
    order by weight desc
30
    measures
   classifier() bag#,
31
32
       ~~~
33 all rows per match
   pattern ( (###)* )
   define $$$}';
36
37
   l_sql := replace(l_sql,'###',rtrim(l_bag,'|'));
   l_sql := replace(l_sql,'\sim\sim',rtrim(l_sum,','|chr(10)));
38
    l_sql := replace(l_sql,'$$$',ltrim(l_pattern,','));
    return l_sql;
40
41 end;
42
```

Function created.

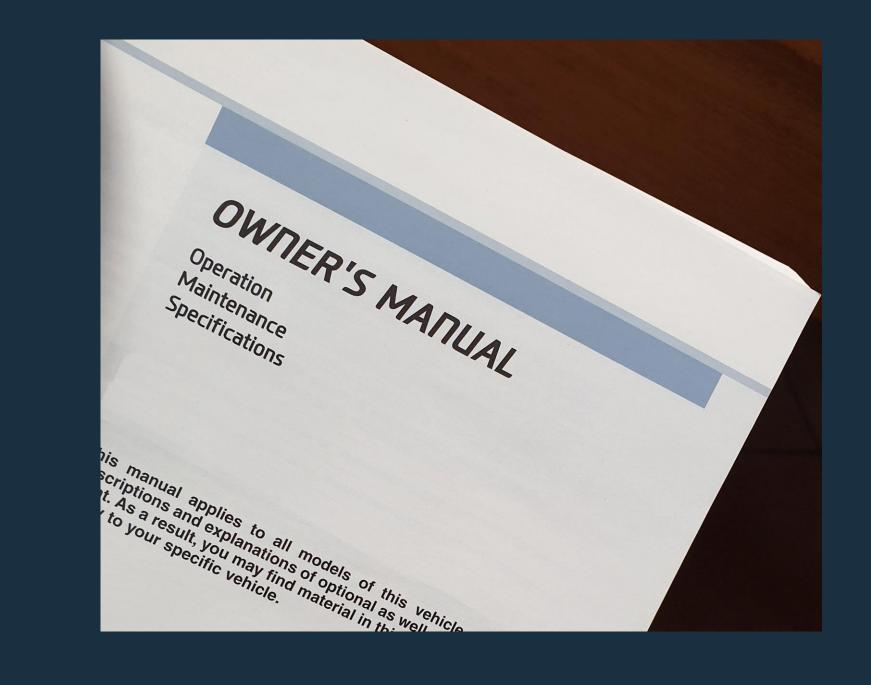

```
SQL> select
       bag#,
      listagg(item,',') within group ( order by item ) as items,
       sum(weight)/1000 kg
    from pack_and_carry(shopping,4)
  6 group by bag#;
       ITEMS
                                                                     KG
BAG#
       butter, deodrant, eggs, gin
BAG1
                                                                   3.57
       apples, honey, ketchup, soda, steak
BAG2
                                                                   3.61
       carrots, detergent, icecream, vegemite
BAG3
                                                                   3.38
       bananas, biscuits, bread, dogfood, milk
                                                                   3.59
BAG4
```

```
SQL> select
       bag#,
      listagg(item,',') within group ( order by item ) as items,
      sum(weight)/1000 kg
     from pack_and_carry(shopping,4)
    group by bag#;
       SQL> select
BAG#
              bag#,
              listagg(item,',') within group ( order by item ) as items,
BAG1
             sum(weight)/1000 kg
BAG2
         5 from pack_and_carry(shopping,3)
BAG3
           group by bag#;
BAG4
               ITEMS
                                                                            KG
       BAG#
               carrots, deodrant, detergent, gin, honey, vegemite
                                                                          4.83
       BAG1
               biscuits, bread, butter, eggs, milk, soda
       BAG2
                                                                          4.65
               apples, bananas, dogfood, icecream, ketchup, steak
       BAG3
                                                                          4.67
```

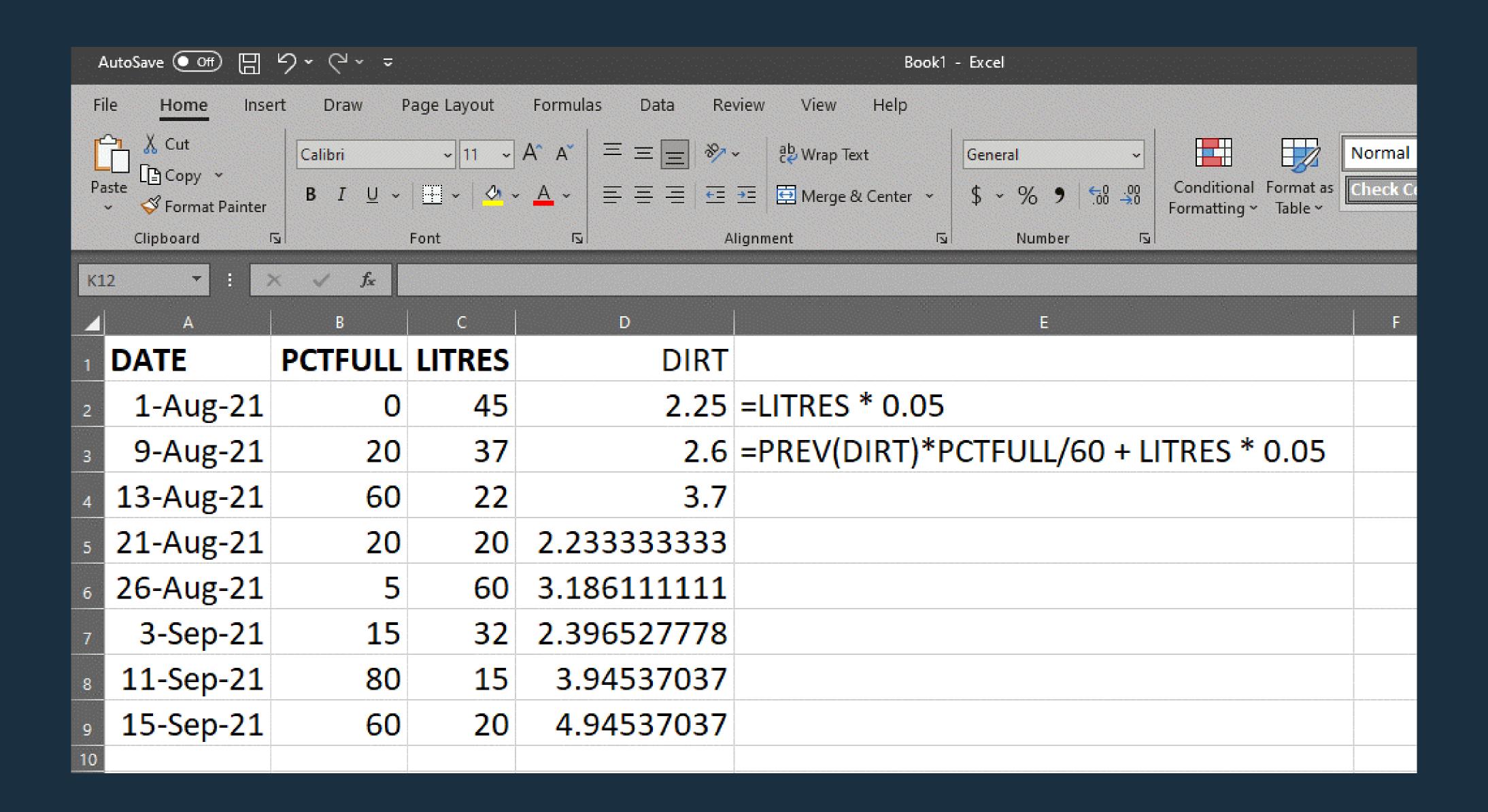
```
SQL> select
       bag#,
      listagg(item,',') within group ( order by item ) as items,
      sum(weight)/1000 kg
     from pack_and_carry(shopping,4)
    group by bag#;
       SQL> select
BAG#
              bag#,
              listagg(item,',') within group ( order by item ) as items,
BAG1
             sum(weight)/1000 kg
BAG2
         5 from pack_and_carry(shopping,3)
BAG3
           group by bag#;
BAG4
               ITEMS
                                                                            KG
       BAG#
               carrots, deodrant, detergent, gin, honey, vegemite
                                                                          4.83
       BAG1
               biscuits, bread, butter, eggs, milk, soda
       BAG2
                                                                          4.65
               apples, bananas, dogfood, icecream, ketchup, steak
       BAG3
                                                                          4.67
```

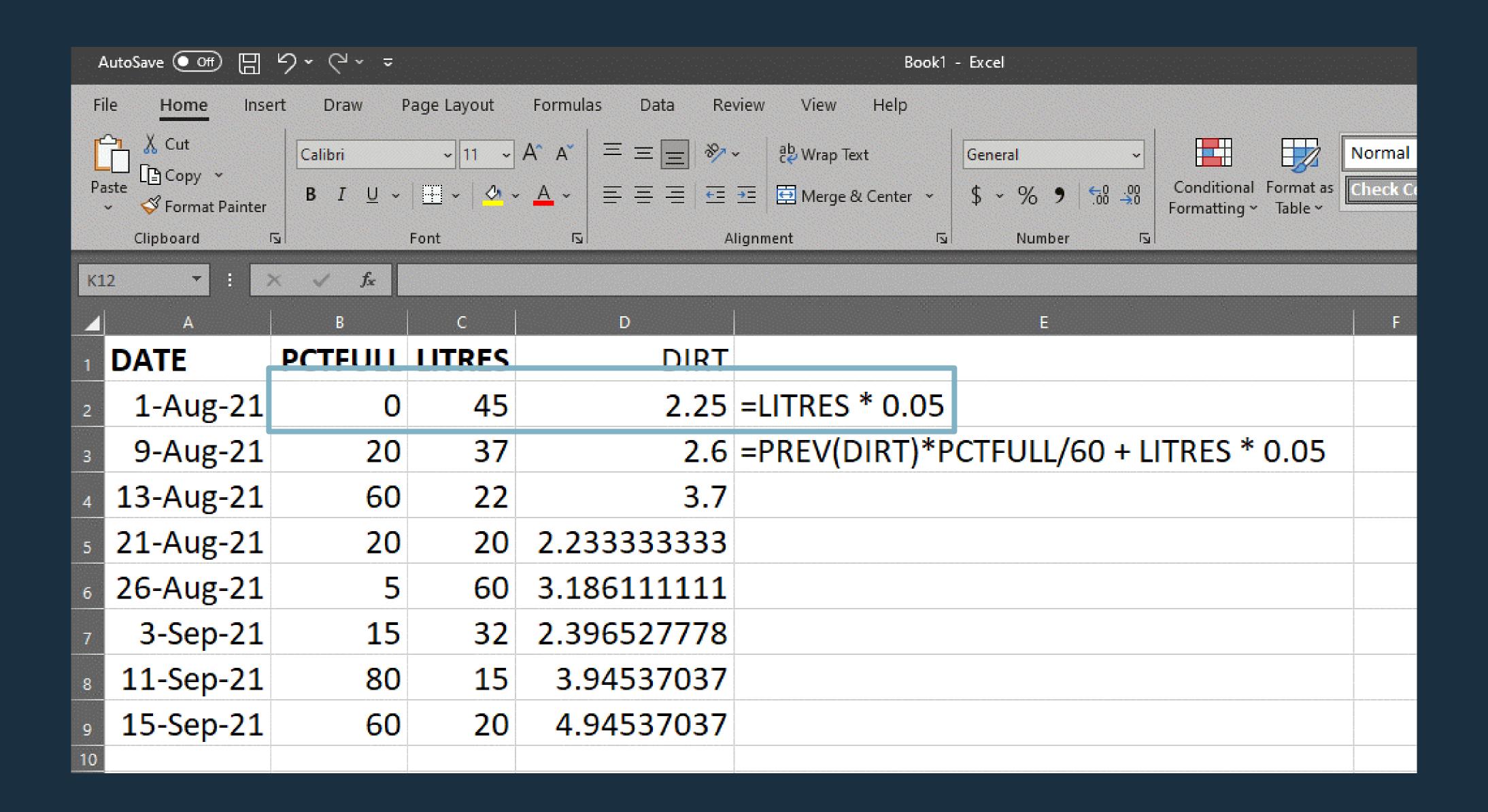
```
SQL> select
       bag#,
      listagg(item,',') within group ( order by item ) as items,
       sum(weight)/1000 kg
     from pack and carry (shopping, 4)
    group by bag#;
       SQL> select
BAG#
         2 bag#,
             listagg(item,',') within group ( order by item ) as items,
              Sum (waight) /1000 kg
BAG1
            from SQL> select
BAG2
                        bag#,
BAG3
         6 grou
                        listagg(item,',') within group ( order by item ) as items,
BAG4
                   4 sum(weight)/1000 kg
       BAG#
                   5 from pack_and_carry(hardware,5)
                   6 group by bag#;
       BAG1
       BAG2
                 BAG#
                         ITEMS
                                                                                     KG
       BAG3
                         chainsaw
                 BAG1
                                                                                     12
                         powerwasher
                 BAG2
                 BAG3
                        hacksaw, tap, transformer, vice
                                                                                   8.95
                        bucket, hammer, rake, screwdriver, shovel, wood
                 BAG4
                         broom, chisel, drill, padlock, paint, sink
                 BAG5
```

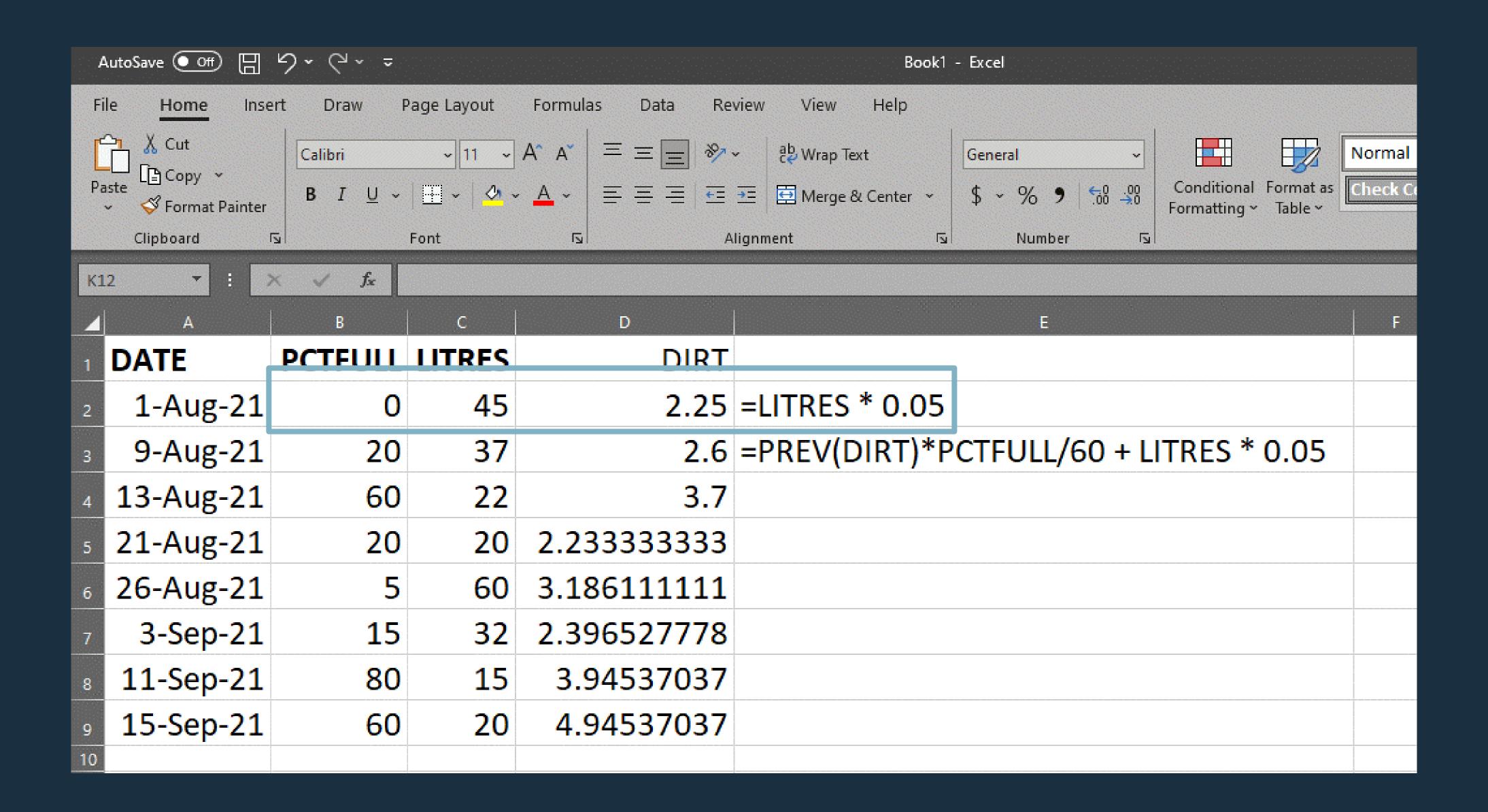

weekend is over ©

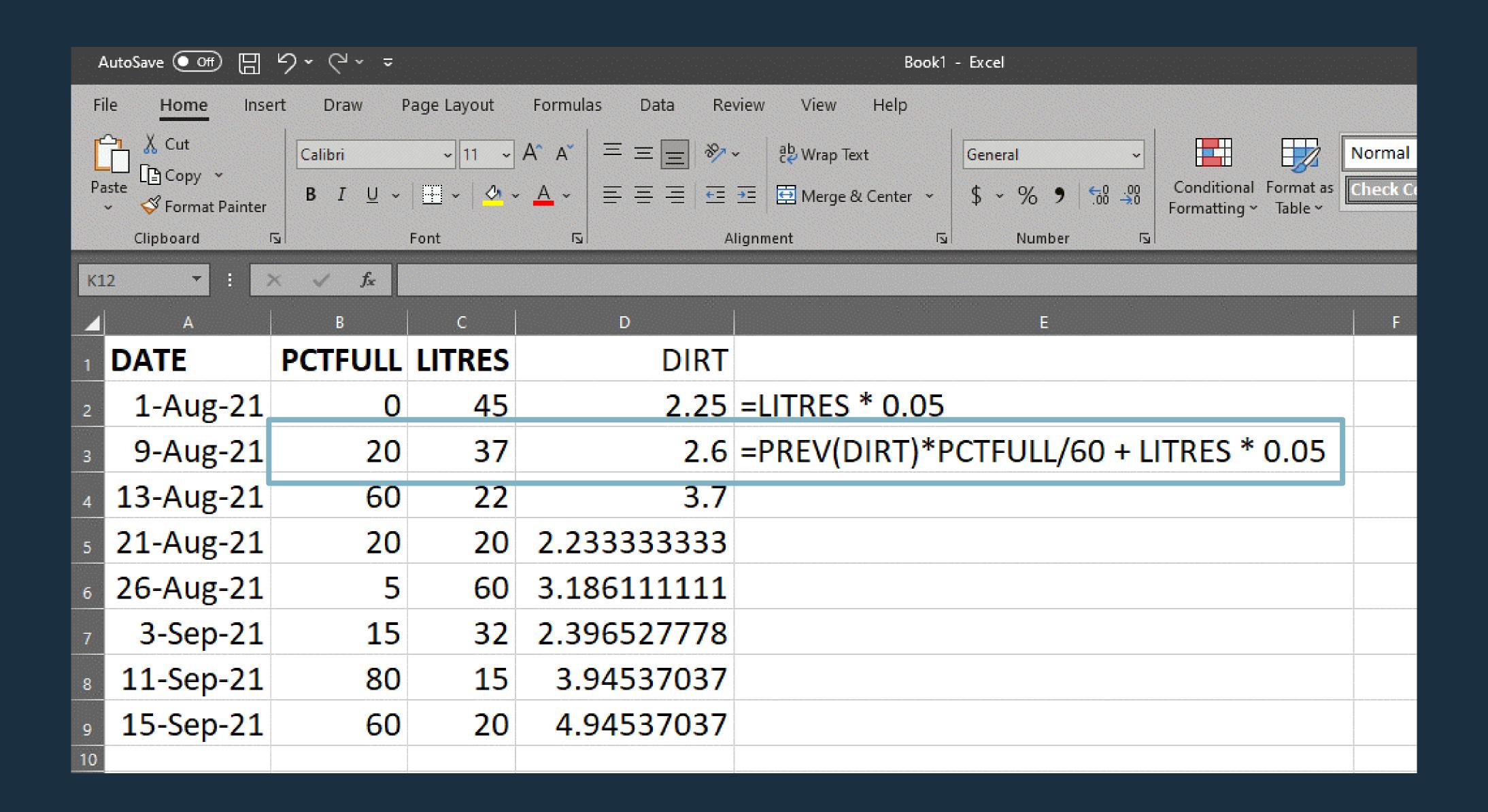


"Refuel on the discount days \$\$\$."


```
SQL> select *
2 from car_fuel;
```


DTE	PCTFULL	LITRES
01-AUG-21	0	45
09-AUG-21	20	37
13-AUG-21	60	22
21-AUG-21	20	20
26-AUG-21	5	60
03-SEP-21	15	32
11-SEP-21	80	15
15-SEP-21	60	20




"Clean fuel"


```
SQL> select *
2 from car_fuel;
```

DTE	PCTFULL	LITRES
01-AUG-21	0	45
09-AUG-21	20	37
13-AUG-21	60	22
21-AUG-21	20	20
26-AUG-21	5	60
03-SEP-21	15	32
11-SEP-21	80	15
15-SEP-21	60	20


```
SQL> select *
2 from car_fuel;
```

DTE	PCTFULL	LITRES	DIRT
01-AUG-21	0	45	2.25
09-AUG-21	20	37	
13-AUG-21	60	22	
21-AUG-21	20	20	
26-AUG-21	5	60	
03-SEP-21	15	32	
11-SEP-21	80	15	
15-SEP-21	60	20	


```
SQL> select *
2 from car_fuel;
```

DTE	PCTFULL	LITRES	DIRT
01-AUG-21	0	45	2.25
09-AUG-21	20	37	
13-AUG-21	60	22	
21-AUG-21	20	20	
26-AUG-21	5	60	
03-SEP-21	15	32	
11-SEP-21	80	15	
15-SEP-21	60	20	


```
SQL> select *
2 from car_fuel;
```

DTE	PCTFULL	LITRES	DIRT
01-AUG-21	0	45	2.25
09-AUG-21	20	37	
13-AUG-21	60	22	
21-AUG-21	20	20	
26-AUG-21	5	60	
03-SEP-21	15	32	
11-SEP-21	80	15	
15-SEP-21	60	20	


```
SQL> select *
2 from car_fuel;
```

DTE	PCTFULL	LITRES	DIRT
01-AUG-21	0	45	2.25
09-AUG-21	20	37	2.6
13-AUG-21	60	22	
21-AUG-21	20	20	
26-AUG-21	5	60	
03-SEP-21	15	32	
11-SEP-21	80	15	
15-SEP-21	60	20	

recursion in SQL


```
SQL> select
       car_fuel.*,
       row_number() over (order by dte ) as seq
    from car_fuel;
             PCTFULL
                         LITRES
DTE
01-AUG-21
                              45
09-AUG-21
                              37
                   20
                              22
13-AUG-21
                   60
21-AUG-21
                              20
                   20
26-AUG-21
                              60
03-SEP-21
                              32
                   15
                              15
11-SEP-21
                   80
15-SEP-21
                   60
                              20
```

```
SQL> select
       car_fuel.*,
       row_number() over (order by dte ) as seq
    from car_fuel;
             PCTFULL
                          LITRES
DTE
                                         SEQ
01-AUG-21
                              45
09-AUG-21
                              37
                   20
13-AUG-21
                              22
                   60
21-AUG-21
                              20
                   20
                                           4
26-AUG-21
                              60
03-SEP-21
                                           6
                              32
                   15
11-SEP-21
                              15
                   80
15-SEP-21
                   60
                               20
```

```
SQL> with t as
2  ( select
3      car_fuel.*,
4      row_number() over (order by dte ) as seq
5     from car_fuel
6  ),
```

```
SQL> with t as
2  ( select
3      car_fuel.*,
4      row_number() over (order by dte ) as seq
5     from car_fuel
6  ),
```

```
SQL> with t as
 2 (select
     car_fuel.*,
  3
        row_number() over (order by dte ) as seq
     from car fuel
    results(dte, pctfull, litres, dirt, seq) as
 8
      select dte, pctfull, litres, litres*0.05 dirt, seq
  9
      from t
 10
     where seq = 1
 11
 12
      union all
      select t.dte, t.pctfull, t.litres,
 13
             results.dirt * t.pctfull/60 + t.litres*0.05 , t.seq
 14
 15
      from t, results
      where t.seq - 1 = results.seq
 16
```

```
SQL> with t as
 2 (select
        car_fuel.*,
  3
         row_number() over (order by dte ) as seq
      from car fuel
    ),
    results(dte, pctfull, litres, dirt, seq) as
  8
       select dte, pctfull, litres, litres*0.05 dirt, seq
  9
      from t
 10
11
      where seq = 1
12
      union all
      select t.dte, t.pctfull, t.litres,
13
              results.dirt * t.pctfull/60 + t.litres*0.05 , t.seq
14
15
      from t, results
       where t.seq - 1 = results.seq
 16
 17
     select * from results
    order by seq;
```

```
SQL> with t as
 2 (select
         car_fuel.*,
  3
         row_number() over (order by dte ) as seq
      from car fuel
     results(dte, pctfull, litres, dirt, seq) as
  8
       select dte, pctfull, litres, litres*0.05 dirt, seq
  9
      from t
 10
 11
      where seq = 1
 12
      union all
      select t.dte, t.pctfull, t.litres,
 13
              results.dirt * t.pctfull/60 + t.litres*0.05 , t.seq
 14
 15
      from t, results
       where t.seq - 1 = results.seq
 16
 17
     select * from results
     order by seq;
```

DTE	PCTFULL	LITRES	DIRT
01-AUG-21	0	45	2.25
09-AUG-21	20	37	2.6
13-AUG-21	60	22	3.7
21-AUG-21	20	20	2.23333333
26-AUG-21	5	60	3.18611111
03-SEP-21	15	32	2.39652778
11-SEP-21	80	15	3.94537037
15-SEP-21	60	20	4.94537037

"But I like Excel formulas." (3)

cell formula expressions in SQL

SQL> select dte, pctfull, litres, dirt

- 2 from car_fuel
- model

	Α	В	C	D	Ε	F
1	DATE	PCTFULL	LITRES	DIRT		
2	1-Aug-21	0	45	2.25	=LITRES * 0.05	
3	9-Aug-21	20	37	2.6	=PREV(DIRT)*PCTFULL/60 + LITRES * 0.05	
4	13-Aug-21	60	22	3.7		
5	21-Aug-21	20	20	2.233333333		
6	26-Aug-21	5	60	3.186111111		
	0.0	4 -	0.0	0.006507770		

255

SQL> select dte, pctfull, litres, dirt

- 2 from car_fuel
- model

	Α	В	С	D		F
1	DATE	PCTFULL	LITRES	DIRT		
2	1-Aug-21	0	45	2.25	=LITRES * 0.05	
3	9-Aug-21	20	37	2.6	=PREV(DIRT)*PCTFULL/60 + LITRES * 0.05	
4	13-Aug-21	60	22	3.7		
5	21-Aug-21	20	20	2.233333333		
6	26-Aug-21	5	60	3.186111111		
	0001	4-		0.006507770		

256

SQL> select dte, pctfull, litres, dirt

- 2 from car_fuel
- model
- dimension by (row_number() over(order by dte) seq)

		А	В	С	D	E	F
	1)ATE	PCTFULL	LITRES	DIRT		
	2	1-Aug-21	0	45	2.25	=LITRES * 0.05	
Ш	3	9-Aug-21	20	37	2.6	=PREV(DIRT)*PCTFULL/60 + LITRES * 0.05	
П	4	L3-Aug-21	60	22	3.7		
П	5	21-Aug-21	20	20	2.233333333		
	6	26-Aug-21	5	60	3.186111111		
			4 -		0.000		

SQL> select dte, pctfull, litres, dirt

- 2 from car_fuel
- model
- dimension by (row_number() over(order by dte) seq)

		А	В	С	D	E F
ı	1	ATE	PCTFULL	LITRES	DIRT	
ı	2	1-Aug-21	0	45	2.25	=LITRES * 0.05
ı	3	9-Aug-21	20	37	2.6	=PREV(DIRT)*PCTFULL/60 + LITRES * 0.05
ı	4	L3-Aug-21	60	22	3.7	
ı	5	21-Aug-21	20	20	2.233333333	
L	6	26-Aug-21	5	60	3.186111111	
			4 -	0.0		

258

```
SQL> select dte, pctfull, litres, dirt
2 from car_fuel
```

- 3 model
- 4 dimension by (row_number() over(order by dte) seq)
- 5 measures(dte, pctfull, litres, 0 dirt)

	Δ	R	C	D	E F
	DATE	PCTFULL	LITRES	DIRT	
2	1-Aug-21	0	45	2.25	=LITRES * 0.05
3	9-Aug-21	20	37	2.6	=PREV(DIRT)*PCTFULL/60 + LITRES * 0.05
4	13-Aug-21	60	22	3.7	
5	21-Aug-21	20	20	2.233333333	
6	26-Aug-21	5	60	3.186111111	
	0.0	4.5		0.000507770	


```
SQL> select dte, pctfull, litres, dirt
 2 from car_fuel
     model
    dimension by ( row_number() over(order by dte) seq )
    measures (dte, pctfull, litres, 0 dirt)
  6
       rules(
          dirt[any] order by seq =
             presentnnv(dirt[cv()-1],dirt[cv()-1],0) *
  8
             pctfull[cv()]/60 +
  9
             litres[cv()]*0.05
 10
 11
             );
```

	Α	В	С	D	E	F
1	DATE	PCTFULL	LITRES	DIRT		
2	1-Aug-21	0	45	2.2	=LITRES * 0.05	
3	9-Aug-21	20	37	2. 5	=PREV(DIRT)*PCTFULL/60 + LITRES * 0.05	
4	13-Aug-21	60	22	3.7		
5	21-Aug-21	20	20	2.233333333		
6	26-Aug-21	5	60	3.186111111		
	0.0	4 =	0.0	0.006507770		

```
SQL> select dte, pctfull, litres, dirt
 2 from car fuel
     model
    dimension by ( row_number() over(order by dte) seq )
     measures (dte, pctfull, litres, 0 dirt)
       rules(
          dirt[any] order by seq =
             presentnnv(dirt[cv()-1],dirt[cv()-1],0) *
  8
  9
             pctfull[cv()]/60 +
             litres[cv()]*0.05
 10
             );
 11
```

```
SQL> select dte, pctfull, litres, dirt
 2 from car fuel
    model
    dimension by (row number() over(order by dte) seq )
    measures (dte, pctfull, litres, 0 dirt)
      rules(
 6
         dirt[any] order by seq =
 8
                     PCTFULL
            DTE
                                   LITRES
                                               DIRT
 9
10
            01-AUG-21
                                       45 2.25
11
                            20
                                       37 2.6
            09-AUG-21
                                       22
            13-AUG-21
                             60
                                                3.7
            21-AUG-21
                             20
                                       20 2.23333333
                                       60 3.18611111
            26-AUG-21
            03-SEP-21
                            15
                                       32 2.39652778
            11-SEP-21
                             80
                                       15 3.94537037
            15-SEP-21
                                       20 4.94537037
                             60
```

wrap up

Futuristic SQL

Intelligent SQL

- grouping sets
- row_number() + analytics
- hypothetical analytics
- partitioned outer join
- WITH clause
- KEEP clause
- MODEL clause
- recursive WITH
- MATCH_RECOGNIZE
- SQL Macros

266

- grouping sets
- row_number() + analytics
- hypothetical analytics
- partitioned outer join
- WITH clause
- KEEP clause
- MODEL clause
- recursive WITH
- MATCH_RECOGNIZE
- SQL Macros

23 years23 years23 years

- grouping sets
- row_number() + analytics
- hypothetical analytics
- partitioned outer join
- WITH clause
- KEEP clause
- MODEL clause
- recursive WITH
- MATCH_RECOGNIZE
- SQL Macros

23 years 23 years 23 years

- grouping sets
- row_number() + analytics
- hypothetical analytics
- partitioned outer join
- WITH clause
- KEEP clause
- MODEL clause
- recursive WITH
- MATCH_RECOGNIZE
- SQL Macros

23 years
23 years
23 years
20 years
20 years
20 years
20 years

- grouping sets
- row_number() + analytics
- hypothetical analytics
- partitioned outer join
- WITH clause
- KEEP clause
- MODEL clause
- recursive WITH
- MATCH_RECOGNIZE
- SQL Macros

23 years
23 years
23 years
20 years
20 years
20 years

- grouping sets
- row_number() + analytics
- hypothetical analytics
- partitioned outer join
- WITH clause
- KEEP clause
- MODEL clause
- recursive WITH
- MATCH_RECOGNIZE
- SQL Macros

23 years 23 years 23 years 20 years 20 years 20 years 18 years

271

- grouping sets
- row_number() + analytics
- hypothetical analytics
- partitioned outer join
- WITH clause
- KEEP clause
- MODEL clause
- recursive WITH
- MATCH_RECOGNIZE
- SQL Macros

23 years 23 years 23 years 20 years 20 years 20 years 18 years

- grouping sets
- row_number() + analytics
- hypothetical analytics
- partitioned outer join
- WITH clause
- KEEP clause
- MODEL clause
- recursive WITH
- MATCH_RECOGNIZE
- SQL Macros

23 years 23 years 23 years 20 years 20 years 20 years 18 years 12 years

- grouping sets
- row_number() + analytics
- hypothetical analytics
- partitioned outer join
- WITH clause
- KEEP clause
- MODEL clause
- recursive WITH
- MATCH_RECOGNIZE
- SQL Macros

23 years 23 years 23 years 20 years 20 years 20 years 18 years 12 years 7 years

- grouping sets
- row_number() + analytics
- hypothetical analytics
- partitioned outer join
- WITH clause
- KEEP clause
- MODEL clause
- recursive WITH
- MATCH_RECOGNIZE
- SQL Macros

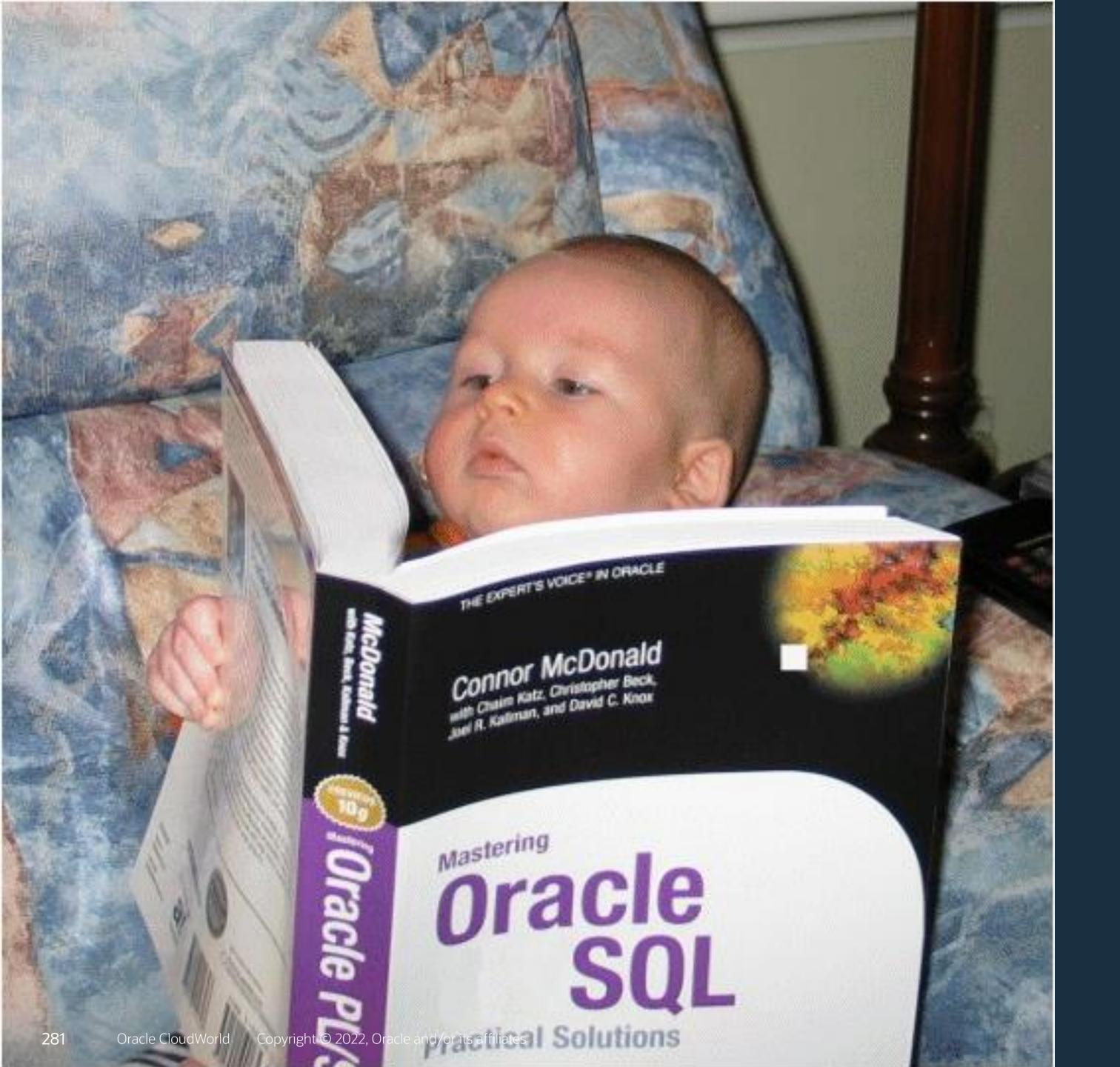
23 years 23 years 23 years 20 years 20 years 20 years 18 years 12 years 7 years

- grouping sets
- row_number() + analytics
- hypothetical analytics
- partitioned outer join
- WITH clause
- KEEP clause
- MODEL clause
- recursive WITH
- MATCH_RECOGNIZE
- SQL Macros

23 years 23 years 23 years 20 years 20 years 20 years 18 years 12 years 7 years 2 years

robust, powerful

you write less code



faster, scalable apps

never too early to start

Son #1 ©

never too late to start ©

NEWS ANALYSIS WHITE PAPERS WEBINARS RESOURCES RESEARCH

TOPICS: BIG DATA BI & ANALYTICS DATA INTEGRATION DATABASE MANAGEMENT

Stay up-to-date on everything Data - Subscribe now to any of our free newslett

NEWSLETTERS

☐ 5 MINUTE BRIEFING: INFORMATION **MANAGEMENT**

[LATEST ISSUE]

DATA CENTER

MULTIVALUE

5 MINUTE BRIEFING:

☐ 5 MINUTE BRIEFING: SAP

[LATEST ISSUE]

BLOCKCHAIN

5 MINUTE BRIEFING:

[LATEST ISSUE]

5 MINUTE BRIEFING:

[LATEST ISSUE]

ORACLE

☐ 5 MINUTE BRIEFING:

MongoDB 6.0 Introduces New NoSQL-SQL Engine

Sep 8, 2022

By Guy Harrison

In previous columns, we've noted that the SQL language is in the ascendant. New SQL native databases such as CockroachDB and Yugabyte are showing robust adoption, while non-relational (NoSQL) databases increasingly provide SQL interfaces to their data.

In light of this increasing trend, it's no surprise to see the introduction of a new SQL capability within the latest release of MongoDB—the Atlas SQL framework.

MongoDB has supported a SQL "bridge" for some time. The MongoDB BI connector provides a means by which business intelligence tools can read MongoDB data via SQL. The BI connector appears to SQL clients as a MySQL database.

your turn!

• livelabs.oracle.com

(hands on labs)

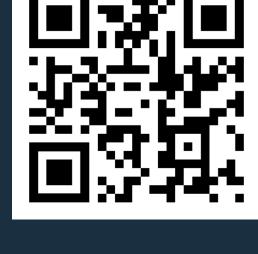
bit.ly/database4dev

(SQL beginners)

• livesql.oracle.com

(SQL scratchpad)

developer.oracle.com/free


(so much great free stuff)

ORACLE CloudWorld

Let's connect!

Connor McDonald, Database Advocate https://linktr.ee/connor

